

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

1st Term Examination - 2018

Class: 11 B, C

Sub: Mathematics
DURATION:3 Hrs15Mins

F.M.: 80

DATE:30.07.2018

Group- A

(1)	Cho	noose the correct option:-		(8 X 1 = 8)
	1)	If B be the power set of A, state which of the a) A - B b) B - A c) $A \in B$	following is true? d) A = B	
2	2)	State which of the following is the value of C a) $\sqrt{3}$ b) $1/\sqrt{3}$ c) $-1/\sqrt{3}$	ot (- 870 °)? d) -√3	
	3)	If $Cos A + Cos B = 2$, then which of the followa) 1 b) 0 c) -1	ving is the value of Cos (A+Bd) 2)?
	4)	Cot $2\theta + \tan \theta =$ a) $\sin^2 2\theta$ b) $\cot^2 2\theta$ c) $\csc^2 2\theta$	d) tan ² 20	
	5)	2 Sin 40° Sin 10° = a) Cos 30° + Cos 50° b) Cos 30° - Cos 50° c) Cos 50° - Cos 30° d) none of these		
	6)	The maximum value of $4 \times -x^2 - 2$ is a) 0 b) 1 c) 2	d) 3	
	7)	The straight line joining the points $(-3, -4)$ and $(2, 5)$ is a) $5x - 9y = 21$ b) $x - 2y + 8 = 0$ c) $9x - 5y + 7 = 0$ d) $4x - 3y + 7 = 0$		
	8)	The perpendicular of the straight line $3x + 4y + 15 = 0$ from the origin is		
	-,		c) 5 units d) 15 u	ınits
		Grou	р - В	

(II) Answer the following questions:-

 $(4 \times 6 = 24)$

1) A, B, C, D are the four angles taken in order of a cyclic quadrilateral. Prove that Cot A + Cot B + Cot C + Cot D = 0

2) If A, B and C are the angles of a triangle, show that

$$\frac{\text{Cos ACos C+Cos(A+B)Cos(B+C)}}{\text{Cos A Sin C-Sin (A+B) Cos (B+C)}} = \text{Cot C}$$

- 3) If $0 < x < \pi/2$ and $Cos x + Sin x = \sqrt{2}$, then find the value of Sin 3x.
- 4) Find the maximum and minimum values of 5 Cos θ + 12 Sin θ + 12
- 5) Find the value of ½ Sec 80° 2 Cos 20°
- 6) Show that 4 Sin A Sin B Sin C = Sin(A+B-C) + Sin (B+C-A) + Sin (C+A-B) Sin (A+B+C)

Group - C

(III) Answer the following questions:-

(4X6 = 24)

- 1) For any two sets A and B, prove that $(A \cup B)^C = A^C \cap B^C$
- 2) If $S = \{a,b,c,d,e,f\}$ be the universal set and A, B, C are three subsets of S where $A = \{a,c,d,f\}$, $B \cap C = \{a,b,f\}$, find $(A \cup B) \cap (A \cup C)$ and B' $\cup C'$.
- 3) Applying the laws of algebra of sets, prove that $(A \cup B) \cap A = A$
- 4) In an examination 45% of the candidates have passed in English, 40% have passed in Bengali, while 30% have passed in both the subjects. Find the total number of candidates if 90 of them have failed in both the subjects.
- 5) If one root of the equation $x^2 + rx s = 0$, is square of the other, prove that $r^3 + s^2 + 3 s r s = 0$
- 6) If a, b, c are rational and a + b + c = 0, show that the roots of the equation $a x^2 + bx + c = 0$ are rational.

Group - D

(IV) Answer the following questions:-

(4X6 = 24)

- 1) Find the equation of the straight line parallel to y axis and passing through the point (-2, 3)
- 2) If 3a + 2b + c = 0 for all positions of the moving line ax + by + c = 0, show that the line always passes through a fixed point. Find the co ordinates of the fixed point.
- 3) If the angle between the lines y = x 6 and y = mx + 6 be 60°, find m.
- 4) A straight line if perpendicular to the straight line 3x 4y = 6 and passes through (2, 1). Find the equation of the straight line.
- 5) Find the perpendicular distance of the straight line 4x y = 5, from the point (2, -1)
- 6) Find the equation of the straight line equidistant from the point (-2, 3) and the line 8y = 9x 12.

ST. LAWRENCE HIGH SCHOOL

First Term Examination

Sub: Mathematics

Class: XIB, C

FM: 80

Duration: 3 hrs 15mins

Date: 30.07.18

Answers Group-A

(1) 1)C

2)A

3)A

4) C

5) B

6) C

7) C

8)A

Group - B

(II) 1) Opp. Angles of a cyclic quadrilateral are supplementary.

A + C = 180 and B + D = 180

LHS = Cot A + Cot B + Cot(180-A) + Cot(180-B)

= Cot A + Cot B - Cot A - Cot B

2) Consider A + B + C = 180

Hence A + B = 180 - C

And B + C = 180 - A

3) $\cos x + \sin x = \sqrt{2}$

Or, $\sin \pi/4 \cos x + \cos \pi/4 \sin x = 1$

Or, $x + \pi/4 = \pi/2$

Or, $x = \pi/4$

Hence Sin $3x = Sin 3 \pi/4 = 1/\sqrt{2}$

4) Refer to Example 15 of page no 125

5) $\frac{1}{2Cos80}$ - 2 Cos20 = $\frac{1-2(Cos100+cos60)}{2Cos80}$ = $\frac{1+2cos80}{2Cos80}$ = 1

6) L.H.S = 2 Sin A [Cos (B - C) - Cos { B + C)]

= 2 Sin A Cos (B - C) - 2 Sin A Cos (B + C)

= Sin (A + B - C) + Sin (A - B + C) - [Sin (A + B - C) - Sin (B + C - A)]

Group - C

(III) 1) Refer to De Morgan's Law

2) $(AUB) \cap (AUC) = AU(B \cap C)$

[by distributive law]

[by definition of union] $= \{x : x \in A \lor x \in (B \cap C)\}$

={a,b,c,d,f}

Again B' U C' = $(B \cap C)'$

[by De Morgan's law]

 $= \{c, d, e\}$

3) $(AUB) \cap A = (AUB) \cap (AU\emptyset)$

[by identity law]

 $= AU(B \cap \emptyset)$

[by distributive law]

= AUØ

[by identity law]

= A

[by identity law]

4) Let A and B be the sets of candidates who passed in English and Bengali resp. We have n(A) = 45%, n(B) = 40%, and $n(A \cap B) = 30\%$

By using formula $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

We get, n(AUB) = 55%

Therefore 55% candidates passed in at least one of the two subjects

Hence (100 - 55) % = 45% candidates failed in both the subjects.

Hence 90 candidates failed in both subjects when total no of candidates = $\frac{100X90}{45}$ = 200

5) One root of the equation is the square of the other. Let us assume that the roots of the equation are α and α^2

Hence $\alpha (1 + \alpha) = -r$ ----(1) and $\alpha^3 = -s$

Now cubing both side of eq (1) we get

$$-s[1-s-3r]=-r^3$$

Or
$$r^3 + s^2 + 3 sr - s = 0$$

6)
$$b = -(c + a)$$

The discriminant of the equation is

$$\{-(c+a)\}^2 - 4ac = (c+a)^2 - 4ac = (c-a)^2$$

Since a, b, c are rational and the discriminant of equation is perfect square, hence the roots of the equation are rational.

Group - D

(IV)1) Let us assume that the equation of the reqd. straight line is x = a. As it passes through pt (-2, 3) we have, a = -2.

Hence the eq. of the straight line is x + 2 = 0

2) From the given condition we have c = -3a - 2b. Now eq. of the moving straight line is ax + by -3a -2b = 0, or a(x - 3) + b(y - 2) = 0 -----(1).

The straight line (1) passes through the point of intersection of the straight lines x - 3 = 0 and y - 2 = 0, whose point of intersection is (3,2)

Hence the straight line (1) passes through a fixed point and its co ordinates are (3, 2)

3) Slopes of the given line are 1 and m resp. By the problem we have

$$tan60 = \pm \frac{1-m}{1+m.1}$$
, taking positive and solving we get m = -2 + $\sqrt{3}$

And by taking - sign and solving we get $m = -2 - \sqrt{3}$ which are the reqd. values of m.

4) The eq. of the straight line perpendicular to the straight line 3x - 4y = 6 is 4x + 3y = c. If this line passes though pt (2,1) then we have $4x^2 + 3x^2 = c$, or c = 11

Therefore the reqd eq of the straight line is 4x + 3y = 11

5) If p be the perpendicular distance of the straight line from the pt (2, -1) then we have $P \pm \frac{4.2 - (-1) - 5}{\sqrt{4^2 + (-1)^2}} = 4/\sqrt{17}.$

The reqd. perpendicular distance of the straight line 5x - 12y + 7 = 0 from the pt (3,4) is 26/13 = 2 unit by following the above procedure.

6)
$$8y - 9x + 12 = 0$$
 -----(1).

Let us assume the eq. of the straight line is 8y - 9x + c = 0———(2)

By question the perpendicular distance of (-2,3) form the line (1) = 2 X perpendicular distance of (-2,3) from the line (2)

Or,
$$24 + 18 + 12 = 2 (24 + 18 + c)$$
, or $c = -15$

Hence the reqd eq is 8y - 9x - 15 = 0