ST. LAWRENCE HIGH SCHOOL PRE-ANNUAL EXAMINATION - 2018 CLASS: XI MATHEMATICS and the co-ordinates of the opposite vertex ann. 21,474,6 talluation or its **FULL MARKS: 80** Elsas al [Relevant rough work must be done in the margin of the page containing the answers] (3.0). Find the equation of the parabola. PART-A 1. Select the correct Alternatives : 10x1=1(- If ${}^{n}P_{r} = 720$ and ${}^{r}C_{r} = 120$ then the value of r is a) i) 2 ii) 3 iii) 4 . iv) none of these - The equation of the line passing through (2,3) and perpendicular to the line 3x+4y-5=0b) is i) 4x-3y+1=0 ii) 4x-3y+5=0 iii) 4x+4y-5=0 iv) 4x-3y-7=0 - The value of $\tan \frac{\Pi}{g}$ is i) $\sqrt{2}-1$ ii) $-\sqrt{2}+1$ iii) $\sqrt{2}+1$ iv) none of these C) - If $\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$ then the value of x is i) 10 ii) 100 iii) 1000 iv) 1 d) - The value of $\sqrt{3}\cos ec 20^{\circ} \sec 20^{\circ}$ is e) an segment (0,2,0), (0,1) f) The value of $\lim_{x \to 1} (1-x) \tan \frac{\Pi x}{2}$ is i) $\frac{2}{\Pi}$ ii) $\frac{\Pi}{2}$ iii) does not exist iv) 1 - g) $\frac{d}{dx}\sin(x^0) = i$ $\frac{\Pi}{180}\cos x^0$ ii) $\cos x^0$ iii) $-\frac{\Pi}{180}\cos x^0$ iv) none - $\frac{d}{dx}\left(\tan\sqrt{x}\right) = i \frac{\sec^2\sqrt{x}}{2\sqrt{x}} \quad ii) \quad \frac{2\sec\sqrt{x}}{\sqrt{x}} \quad iii) \quad \frac{\tan\sqrt{x}}{\sqrt{x}} \quad iv) \text{ none of these}$ - The length of the L.R. of the ellipse $16x^2 + y^2 = 16$ is i) $\frac{3}{4}$ ii) $\frac{1}{4}$ iii) $\frac{1}{2}$ iv) $\frac{1}{8}$ The eccentricity of the hyperbola $9y^2 - 4x^2 = 36$ i) $\frac{\sqrt{13}}{2}$ ii) $\frac{2}{\sqrt{13}}$ iii) $\frac{\sqrt{13}}{4}$ iv) $\frac{4}{\sqrt{13}}$ | | 33 | · · · · · · · · · · · · · · · · · · · | |-------|--------------|---| | 2. | a) | GROUP - B | | ile s | a) | Answer any two questions | | | ĺ, | If $n(x) = 4$ and $n(y) = 8$. Find the maximum and minimum numbers of elements of $x \cup y$. | | ** | 14 | | | | ii. | $A = \{ (a,b): a+3b = 12, a, b \in n \}$, Find the range of A. | | | iii. | Show that $\cos^6 x + \sin^6 x = \frac{1}{2} (5 + 3\cos 4x)$ | | | iv | Find the value of $\left[\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}\right]$ where $(n \in z^+)$, | | | b) | Answer any two questions | | | i. | If $(1+i)(2+1)(3+i)$ $(n+i) = a+ib$, show that | | | | 2.5.10 $(n^2+1) = a^2 + b^2$ | | | ii. | If n is an even number, find the sum of the series upto n torms | | | | $1^2 - 2^2 + 3^2 - \dots - \frac{n(n+1)}{3}$ | | | iii. | | | | | How many 5 digits telephone number be formed from the digits from 0 to 9 when every number start with 23 (no digit being | | (4 | | repeated in any number). | | | iv. | Find the value of $3^{2/3}3^{2/9}3^{2/27}$ | | * | c) | Answer any one questions. | | | i. | If the gradient of the line joining the points (2a, -2) and (1, -a) is | | | | (-2). Find the value of a. | | | ii. | Find the ratio in which the plane $2x + 2y - 2z = 1$ divides the line | | | 47 | segment Joining the points $A(2, 1, 5)$ and $B(3, 4, 3)$ | | | d) | Answer any one questions. | | | i.· | Evaluate $\lim_{x\to 0} \frac{I\sin x}{x}$ | | ¥ | li. | Find the condition of existence of $\lim_{x\to 0} f(x)$ | | | ę) | Answer any one questions. 2X1 | | ŗ | ≠ 1.
* ++ | Find the variance of first 4 natural numbers | | | ii. | Four letters are placed in four addressed envelopes. Find the | | | \$ | probability that no letter goes to the correct envelope. | | | | | | | | Group - C | | 1 | 0.00 | swer any Two questions:- (4 X 2 = 8 | | | 25// | any three sets A, B and C prove that A - (B \cap C) = (A - B) U (A - C) | | | 10.000 | ove that $16 \cos \pi/15 \cos 2\pi/15 \cos 4\pi/15 \cos 8\pi/15 = -1$ | | | iii)/in a | any triangle ABC if $8R^2 = a^2 + b^2 + c^2$. Prove that the triangle is rt. angled. | | יים . | ."
h)Δn | swer any Two questions:- (4 X 2 = 8 | | 1 2 | | We by induction that the sum of the cubes of three successive positive integer | | ¥ | | divisible by 9. | | 37 | | the vertices of an equilateral triangle be represented by the complex numbers | | | | , z_2 , z_3 on the Argand diagram, then prove that $z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_2z_3 + z_3z_3$ | | | iii) He | ow many words can be made using all the letters in the word MONDAY? How | | | | any of them begin with M and do not end with Y. | | | | nd the coefficient of x^{10} in the expansion of $(1-2x+3x^2)(1-x^2)^{15}$ | | | | he sum of three numbers in A.P is 18. If 2, 4, and 11 be added to them | | | re | spectively the resulting numbers arein G.P. Determine the numbers. | | | ~1 A ·· | nswer any Two questions:- (4 X 2 = | | | | nswer any Two questions:- $(4 \times 2 = 4 \times 1)$ (4 \times 2 = 4 Straight line has slope 5/12 and it passes through the point P (3, -7/2). Find | | | 1)1- | the second instance of a point O on this line which is at a distance of 12/2 unit from | the co ordinates of a point Q on this line which is at a distance of 13/2 unit from ii) The equation of the hypotenuse of a right angled isosceles triangle is 3x + 4y = 4 and the co ordinates of the opposite vertex are (2,2). Find the equation of its other sides. iii) The co ordinates of the two ends of latus rectum of a parabola are (3,4) and (3,0). Find the equation of the parabola. d) Answer any One question:- (4X1=4) Cosec x-Cotx i) Evaluate Lim $x \rightarrow 0$ ii) Find from the first principle the derivative of Cos(logx) e) Answer any One question (4X1=4) i) Show that $\sqrt{2}$ is not rational (Use the method of contradiction) ii) By giving a counter example show that the following statement is false: The equation $4x^2 - 25 = 0$ does not have a root lying between (-3) and (-2). f) Answer any One question $(4 \times 1 = 4)$ i) Two unbiased dice are rolled together. Find the odds in favour of getting two digits, the sum of which is 7. ii) Find the S.D from the following data | Daily wages (in Rs) | 1 30 24 | Table | | | | | |---------------------|---------|---------|---------|---------|--|--| | | 20 – 24 | 25 – 29 | 30 – 34 | 35 - 39 | | | | No. of employees | 16 | 28 | 14 | 12 | | | ## Group - D 4. a) Answer any one question: $5 \times 1 = 5$ - i) If $\frac{\tan 3A}{\tan A} = k$; show that $\frac{\sin 3A}{\sin A} = \frac{2k}{k-1}$; show also that k can not tie between $\frac{1}{3}$ and $\frac{1}{3}$. - ii) Find the domain and range of the function $f(x) = \frac{x}{x^2 5x + 4}$. - iii) If $\tan \frac{\theta}{2} = \cos \cot \theta \sin \theta$; show that $\cos^2 \frac{\theta}{2} = \cos 36^\circ$ - b) Answer any two questions: $5 \times 2 = 10$ - i) Solve: $|x-1| + |x-2| + |x-3| \ge 6 \forall x \in \mathbb{R}$ - ii) If G.M. of two unequal positive numbers a and b is $\frac{a^{p+1}+b^{p+1}}{a^p+b^p}$ then find the value of - iii) From 10 candidates, how many selections of 5 can be made so as to a) Include both the youngest and the oldest. - b) Exclude the youngest if it includes the oldest? - iv) Solve: |z|+z=2+i (z being a complex number) - c) Answer any one question : $5 \times 1 = 5$ - i) Prove that SP + S'P = 20 for the ellipse $\frac{x^2}{100} + \frac{y^2}{100} = 1$, S and S' are the two foci of the ellipse and P is any point on the ellipse. - ii) The co-ordinates of the vertices of a hyperbola are (9, 2) and (1, 2) and the distance between its two foci 10 units. Find the equation of the hyperbola and also the length of its latusrectum: - iii) Prove that the least length of the focal chord of the parabola $y^2 = 4ax$ is its latus rectum. Sanjay Chataduye 28/2/18 # ST. LAWRENCE HIGH SCHOOL #### PRE-ANNUAL EXAMINATION-2018 #### **Mathematics Solution** Class: XI #### F.M. 80 Date of Examination: \$7.01.2018 Part A 1. a(ii), b(i), c(i), d(ii), e(ii), f(i), g(i),, h(i), i(iii), j(i). 2. a.i. 12 maximum when disjoined. ii. {1,2,3} iii. LHS= 1- 3cos²x. sin²x = 1- $\frac{3}{8}$ (1- cos4x) = $\frac{1}{8}$ (5 + 3cosx)= RHS iv. $\tan(\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}) = \tan\frac{\pi}{4} = 1$. b.i. (1+i)(2+i).....(n+i) = a+ib (1-i)(2-i)....(n-i) = a-ib. So $2.5.10....(n^2+1) = a^2 + b^2$. ii. (iii. $8_{p_3} = 336$. iv. Sum of the degrees of 3 is 3(using infinite GP). So $3^3 = 27$. c.i. $\frac{-\alpha+2}{1-2\alpha}$ = -2, ie, $\alpha = \frac{4}{5}$ ii. A(2, 1, 5) and B(3, 4, 3) for 2x + 2y - 2z = 1. The required ratio is 7:5. d.i. Limit does not exist. ii. LHL = RHL f(x=a) e.i. $Var(x) = (n^2-1)/12$. Here n=4. Ans = 5/4. ii. 4 letters can be put in 4 envelope in 3X3=9 ways where no letter goes to the correct envelope and total number of ways is 4!=24. Hence probability is 3/8. ### Group - C 3(a) i) Let x be an arbitrary element of the Set A - (B∩C) Then $x \in A - (B \cap C) \Rightarrow x \in A \land x \not\in (B \cap C)$ Or, $(x \in A \land x \not\in B) \lor (x \in A \land x \not\in C)$ Or, $x \in (A - B) \lor (A - C)$ Therefore $A - (B \cap C) \sqsubseteq (A - B) \lor (A - C)$ Again let y be an arbitrary element of the set $(A - B) \lor (A - C)$ Then $y \in (A - B) \lor y \in (A - C)$ Or $y \in A \land (y \in B \lor y \not\in C) \Rightarrow y \in A \land y \in (B \cap C)$ Or $y \in A - (B \cap C)$ Or $A - (B \cap C) = (A - B) \lor (A - C)$ (ii) Let $\pi/15 = \theta$. Therefore $15\theta = \pi$, and then proceed as example 17. iii) We have $8R^2 = 4R^2(\sin^2A + \sin^2B + \sin^2C)$ Or, $1 - \cos 2A + 1 - \cos 2B + 2 - 2 \cos^2C = 4$ $2\cos(A + B)$. $\cos(A - B) + 2\cos^2C = 0$ Or, $-\cos C[\cos(A - B) - \cos C] = 0$ Or, $\cos C.2\cos A \cos B = 0$ So either $\cos A = 0$ i.e $A = 90^\circ$, or $\cos B = 0$ i.e $b = 90^\circ$, or $\cos C = 0$ i.e $C = 90^\circ$ Therefore the triangle is right angled 3) (b) i) Let P(n) be the statement given by $P(n) = n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9. Then P(1) = 36 which is divisible by 9. Let us assume that P(m) is true. Then $m^3 + (m+1)^3 + (m+2)^3$ is divisible by 9. $=[m^3 + (m+1)^3 + (m+2)^3] + 9 (m^2 + 3m + 3)$ which is always divisible by 9. Thus we see P(1) and P(m+1) is always true whenever P(m) is true. (ii) Assume that the vertices of the equilateral triangle are A,B and C and these points are represented by z_1 , z_2 and z_3 respectively in the Argand diagram. Further assume that iii) There are 6 different letters . So they can be arranged among themselves in 6! = 720 ways. To find the number of words beginning with M, we put the letter M in the first place. So the rest 5 letters can be arranged among themselves in 5! = 120 ways. Again number of words beginning with M and ending with Y we put M in first and Y in last. The remaining 4 letters can be arranged in 4! = 24 ways. Therefore the number of words beginning with M and not ending with Y = 120-24=96. ``` (iv) The given expression (1-2x + 3x²) [1+ {}^{15}C_1(-x) + {}^{15}C_2(-x)^2 + + {}^{15}C_{10}.(-x)^{10} + + (-x)^{15}. Therefore the reqdcoeff of x^{10} is {}^{15}C_{10} + (-2). (-{}^{15}C_9) + 3. {}^{15}C_8 = 3003 + 10010+19305 = 32318 ``` (v)Let the requnos in A.P be a-b , a and a +b. By condition a - b + a + a + b = 18, or a = 6 Again the nos are in G.P. Hence $\frac{a+4}{a-b+2} = \frac{a+b+11}{a+4}$ Or, putting a = 6, we get b² +9b -36 = 0 Or, b = -12 or 3. Hence the reqdnos are 6+12, 6 and 6-12, or 18, 6 and -6 when b =-12 Or, 6-3, 6 and 6 +3, or 3,6,9 when b = 3 3(c) i) We have $\tan\theta=5/12$. Hence $\sin\theta=\mp5/13$ and $\cos\theta=\mp12/13$ Hence the equation of the straight line through P(3,-7/2) is $$\frac{x-3}{\cos\theta} = \frac{y+7/2}{\sin\theta} \quad(1)$$ By the problem Point Q lies on the line (1) where PQ = 13/2 unit. Let (h,k) be the co ordinates of Q. Hence (h,k) will satisfy equation (1). Solving we get $h = 3 + \frac{13}{2} \cos\theta = 9 \text{ or } -3$. And $$k = -7/2 + \frac{13}{2} Sin\theta^2 = -1$$, or -6. Therefore the requco ordinates of Q are (9, -1) or (-3, -6) (ii) Eq of the hypotenuse is 3x + 4y = 4, Hence slope = $-\frac{3}{4}$ If m be the slope of one of the equal sides of the triangle then we have $$Tan45^\circ = \mp \frac{4m+3}{4-3m}$$(1), Taking positive sign we get m = 1/7. And by taking negative sign we get m = -7. Therefore eq of its other sides are $$x - 7y + 12 = 0$$ (taking $m = 1/7$) or $$7x + y = 16$$ (taking m = -7) iii) Here the axis of the parabola is parallel to x axis. Hence the equation of the reqd parabola is $(y - \beta)^2 = 4a (x - \infty)$. Co ordinates of the ends of latus rectum of the parabola are $(\infty + a, \beta + 2a)$ and $(\infty + a, \beta - 2a)$. By question $$\propto +a = 3$$, $\beta + 2a = 4$, $\beta - 2a = 0$ Solving we get $\Re = 2$ and $\alpha = 2$. Therefore the requirements and $\Re = 2$ and $\Re = 3$. Therefore the requirements $\Re = 2$ and $\Re = 3$. Therefore the requirements $\Re = 3$. 3(d) i) $$\lim_{x \to 0} \frac{1}{\sin x} \left[\frac{1}{\sin x} - \frac{\cos x}{\sin x} \right] = \lim_{x \to 0} \frac{2 \sin^2 x/2}{x^2} = \lim_{x \to 0} \frac{\sin x}{x} = 1/2$$ (ii) Let $f(x) = \cos(\log x)$ and $u = \log x$. Then we have $u + k = \log(x + h)$. By using the derivatibe of f(x) w.r.t x at the point x, we get $f'(x) = \lim_{h \to 0} \frac{f(x+h) = f(x)}{h} = \lim_{k \to 0} \frac{\cos(u+k) - \cos u}{k}$ = limSin(u + k/2) . lim $$\left[\frac{-sink/2}{k/2}\right]$$. lim $\frac{1}{h}\log\frac{x+h}{x}$ k $\longrightarrow 0$ k $\longrightarrow 0$ h $\longrightarrow 0$ = - $$\sin u \lim_{z \to 0} \frac{\log(1+z)}{z} \cdot 1/x$$ = - $\sin u \cdot 1 \cdot 1/x$ = - $1/x \sin(\log x)$ (e) i) Let p be the given mathematical statement and if possible let us assume that p is not true. i.e $\sqrt{2}$ is rational. Therefore $\sqrt{2} = x/y$, where x and y are positive integers prime to each other and y >1. Hence $$2 = \frac{x^2}{y^2}$$, or $x^2 / y = 2y$(1) By assumption x and y are positive integers prime to each other. Hence x^2 and y are also positive integers prime to each other. Therefore form (1) we get a positive rational number which is not an integer = a positive integer which is clearly impossible. Hence our assumption is not true. (ii) We have $4x^2 - 25 = 0$. Or $x \mp 5/2$ Clearly the equation $4x^2 - 25 = 0$, has a root (-5/2) and this root lies between (-3) and (-2). Therefore the counter example of the given statement is the root x = -5/2 and hence the given statement is not true. (f) i) The first die may have 6 different outcomes each of which can be associated with 6 different outcomes of the second die. Let A denote the event that the sum of the digits in the two dice is 7. Clearly event A contains equally likely event points (1,6), (2,5), (3,4),(4,3) 4. a.i. RHS = $$\frac{2k}{k-1} = \frac{\frac{2\tan 3A}{\tan A}}{\frac{\tan 3A}{\tan A} - 1} = \frac{2 \sin A \cos A}{\sin 2A} = \frac{\sin 3A}{\sin A}$$ $$\frac{\tan^{3}A}{\tan A} = k \Rightarrow (3k-1) \tan^{2}A = k-3$$, ie, $\tan A = \pm \sqrt{\frac{k-3}{3k-1}}$, ie, $k>3$. K<1/3 ii. Domain R{1, 4} For Range of y $$(5y+1)^2 - 16y^2 \ge 0$$ or $(9y+1)(y+1) \ge 0$ R: $$(-\infty < y < -1/9)$$ U $(-1 < y < \infty)$ iii. LHS => $$2(1 - \cos^2\frac{\theta}{2}) = (2\cos^2\frac{\theta}{2} - 1)^2$$ or, $\cos^2\frac{\theta}{2} = \frac{2 \pm 2\sqrt{5}}{8}$ So $\cos^2\frac{\theta}{2} = \frac{\sqrt{5} + 1}{4} = \cos 36^0$ b.i. If $$x \ge from \ the \ given equation -(x-1) - (x-2) - (x-3) \ge 6$$ So the solution is $(-\infty, 0] \cup [4, \infty)$ ii. By the problem $a^{p+1} + b^{p+1} = a^{p+1/2} \sqrt{b} + \sqrt{a}$. $b^{p+1/2}$ or, $$a^{p+1/2} = b^{p+1/2}$$ or, $p = \frac{1}{2}$ iii. a) $$8_{C_3} = 56$$ b) $$8_{C_4} = 105$$ iv. $$IzI + z = 2 + I = x + \sqrt{x^2 + y^2} = 2 : y = 1 = x = \frac{3}{4} = x = \frac{3}{4} + i$$. c.i. e=8/10Coordinates of foci = $(\pm 8, 0)$ $$SP + SP' = \sqrt{(10\cos\theta - 8)^2 + 36\sin^2\theta} + \sqrt{(10\cos\theta + 8)^2 + 36\sin^2\theta} = 20.$$ ii. Coordinate of the centere: (5, 2) Let the equation of hyperbola be $$\frac{(x-5)^2}{16} - \frac{(y-2)^2}{9} = 1$$ $$2a = 8$$ and $2ae = 10 \Rightarrow b^2 = 9$ and $a^2 = 16$. iii. Length of the focal chord = $a(t + \frac{1}{t})^2$ unit = $a[(t - \frac{1}{t})^2 + 4] = a(t - \frac{1}{t})^2$ 4a $\geq 4a$ So the least length of the focal chord of the parabola is 4a which is the latus rectum.