

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

Sub: Mathematics
Duration: 3hrs 15 Mins.

Class: 12

FM: 80

Date: 06.08.2018

Part - A

Group- A

(1) Answer the following questions:-

 $(2 \times 10 = 20)$

- 1) Show that the relation " is congruent to " on the set A of all triangles in a plane is an equivalence relation.
- 2) If Z be the set of integers, prove that the function $f: Z \to Z$, defines by f(x) = |x|, for all $x \in Z$, is a many one function.
- 3) Find the principal value of Cot -1 (-1)
- 4) Prove that $Sec^2(tan^{-1} 2) + cosec^2(Cot^{-1} 3) = 15$.
- 5) Evaluate $\begin{vmatrix} x-1 & 1 \\ x^3 & x^2 + x + 1 \end{vmatrix}$
- 6) Solve the following system of homogeneous equations x + 2y z = 0, x 2y + 2z = 0, x + z = 0
- 7) Examine the continuity of $f(x) = 2x^2 + 1$ at x = 1.
- 8) Find the derivative w.r.t x, $\sin^{-1} x + \sin^{-1} \sqrt{1-x^2}$
- 9) If $y = \tan^{-1}(x/a)$, find y_2 .
- 10) Determine the value of p and q for which the vectors $p \hat{i} + 2 \hat{j} + 6 \hat{k}$ and $3 \hat{i} 3 \hat{j} + q \hat{k}$ are collinear.

Group - B

(II) Answer any 10 questions :-

 $(4 \times 10 = 40)$

- 1) A relation R is defined on the set of natural numbers N as follows:- $R = \{(x,y): x, y \in N \text{ and } 2x + y = 41\}. \text{ Show that R is neither reflexive nor symmetric and transitive.}$
- 2) Let R be the set of real numbers and $f: R \rightarrow R$ be defined by $f(x) = 2x^2 5x + 6$. Find $f^{-1}(5)$
- 3) Prove that $\sin^{-1} \cos \sin^{-1} x + \cos^{-1} \sin \cos^{-1} x = \pi/2$.
- 4) Find the value of Cos Sin⁻¹(3/5).
- 5) Find the values of x, y, z and t when the following matrices are equal

6) Solve by Cramer's rule:- 3x + y + z = 10, x + y - z = 0, 5x - 9y = 1

7) If
$$A = \begin{pmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$
 be a square matrix, find Adj A and A⁻¹.

8) Evaluate: Lim
$$\frac{(e^{x}-1) \log (1+x)}{x \rightarrow 0 \qquad \text{Sin}^{2} x}$$

9) If
$$x^{V} = e^{x-y}$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(\log ex)^{2}}$

10) If
$$x = e^t Sin t$$
 and $y = e^t Cos t$, then show that $(x + y)^2 d^2 y/dx^2 = 2(x \frac{dy}{dx} - y)$
 $\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$

- 11) If G be the centroid of the triangle ABC, then prove that GA + GB + GC = 0
- 12) If $\vec{a} = 4\hat{i} \hat{j} 3\hat{k}$ and $\vec{b} = -2\hat{i} + \hat{j} + 2\hat{k}$ be two diagonals of a parallelogram, then find its area.

Group - C

(iii) Answer any 2 questions:-

 $(5 \times 2 = 10)$

1) If
$$x + y + z = 0$$
. The show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = 0$

- 2) Verify Rolle's theorem for the functions $f(x) = (x-1)(x-2)^2$ in $1 \le x \le 2$
- 3) If $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & -1 \\ -1 & 1 & -7 \end{pmatrix}$ find A^{-1} , hence solve the following equations x + y z = 3, 2x + 3y + z = 10 and 3x y 7z = 1
- 4) If $\vec{a} = 3 \hat{i} 2 \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 3 \hat{j} + 4 \hat{k}$ find a X b and the area of the parallelogram whose adjacent sides are \vec{a} and \vec{b}

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

Sub :Mathematics

Duration:3hrs 15 Mins.

Class: 12

FM: 10

Date: 06.08.2018

Part - B

Choose the correct option:-	(Answers to	o be done in this	s sneet)	
1) Let $A = \{1, 2, 3\}$, then the are reflexive and symmetri	number of rel c but not trans	ations containin sitive is	g (1 ,2) and (1, 3)whic	h
 a) 2 b) 1 2) The mapping of f: Z → Z d a) Onto but not one — on d) many — one and onto 	c) 3 efined by f(x) = e b) one – or	d) 4 = 3x 2, for all x ne but not onto	$\in \mathbb{Z}$, then f will be c) many one and into	
3) If $g(x) = x^2 + x - 2$, and (g of a) $2x^2 - 3x - 1$ b) 2	(x + 3 c)2	$x^2 + 3x + 1$	d) 2x - 3	
4) If $\sin^{-1} x - \cos^{-1} x = \pi/6$, st a) ½ b) $1/\sqrt{2}$	c) 1	d) $\sqrt{3/2}$		
	c) K-(A) a ^{2x} - 1	nen K A is equa d) 3 K A	Il to	
6) The value of the Lim $\rightarrow 0$ a) $\frac{1}{4} \log_e^a$ b) 1	2x c) ½	d)log _e ^a		
7) The function $f(x) = x + 1 $ a)Continuous at $x = -1$ d) none of these	is b) Differenti	able at x = 1	c) differentiable at x =	±1
8) If $x^2 + y^2 = a^2$, then the va a) x/y b) $-x/y$	lue of dy/dx is c) y/x	d) -y/x		
9) If $f(x) = \log (3x + 1)$ then a) 9/16 b) 9/4	c) $-9/4$	a) - a/10		
	$= \hat{i} + 2\hat{j} + m\hat{j}$		O, then the value of mi	s

ST. LAWRENCE HIGH SCHOOL

Pre Test Examination

Sub: Mathematics

Class: XII

Duration: 3 hrs 15mins

Date: 06.08.18

Model Answers

Part - B 7(a)8(b)9(d)10(c)6(d) 4(d)5(a)2(b)3(d)1(b)Part - A

Group - A

 Let R be the relation " is congruent to " on the set T of all triangles. Since every triangle is congruent to itself, R is reflexive on T i.e Δ is congruent to Δ for all v $\Delta \in \mathsf{T}$

R is symmetric on T since for $\Delta_1 \in T$, $\Delta_2 \in T$, we have

 Δ_1 congruent to $\Delta_2 \rightarrow \Delta_2$ congruent to Δ_1

R is transitive on T since $\Delta_1\!\in\! T$, $\Delta_2\!\in\! T$, $\Delta_3\!\in\! T,\!$ we have

 Δ_1 congruent to Δ_2 and Δ_2 congruent to $\Delta_3 \to \Delta_1$ congruent to Δ_3

Thus R is a equivalence relation on T

- 2. Let x> 0 be an arbitrary element of Z. Then f(x) = |x| = x and f(-x) = |-x| = xi.e f(x) = f(-x), when x, $(-x) \in Z$ and $x \neq -x$ Hence $f: Z \rightarrow Z$ is a many one function.
- 3. If the principal value of $\cot^{-1}(-1)$ be α , then $\cot \alpha = -1 = \cot (\pi \pi/4) = 3\pi/4$
- 4. Let $\tan^{-1} 2 = \alpha$ and $\cot^{-1} 3 = \beta$ Hence $\tan \alpha = 2$ and $\cot \beta = 3$ LHS = $\sec^2 \alpha + \csc^2 \beta = 1 + 4 + 1 + 9 = 15$
- The given determinant = $(x-1)(x^2 + x + 1) x^3$ = $x^3 1 x^3 = -1$
- We have D = $\begin{vmatrix} 1 & 2 & -1 \\ 1 & -2 & 2 \\ 1 & 0 & 1 \end{vmatrix}$ = $\begin{vmatrix} 1 & 2 & -1 \\ 0 & -4 & 3 \\ 0 & -2 & 2 \end{vmatrix}$ $\begin{pmatrix} R_2' = R_2 R_1 \\ R_3' = R_3 R_1 \end{pmatrix}$

= -2. Hence the given system of equation has only trivial solution i.e x = y = z = 0

We have $\lim_{x \to 1+} f(x) = \lim_{x \to 1+} (2x^2 + 1) = 3$

Again Lim
$$f(x) = Lim (2 x^2 + 1) = 3$$
 and $f(1) = 3$
 $x \to 1$

Therefore the function $f(x) = (2x^2 + 1)$ is continuous at x = 1.

8. Let y be the given expression and $x = \sin\theta$ Putting the value of x as Sin0 in the given expression we get $y = \theta + \sin^{-1} \sin(\pi/2 - \theta) = \pi/2$ Differentiating both sides w.r.t x we get $dy/dx = d/dx(\pi/2) = 0$

9. Differentiating two times successively w.r.t x, we get
$$y_1 = \frac{a^2}{x^2 + a^2} \times \frac{1}{a} = \frac{a}{x^2 + a^2}$$

and
$$y_2 = a$$
. $d/dx (x^2 + a^2)^{-1}$
= $-\frac{a}{(x^2 + a^2)^2} \times 2x = -2ax/(x^2 + a^2)^2$

10. Since the given vectors are collinear we have

 $p\hat{i} + 2\hat{j} + 6\hat{k} = m(3\hat{i} - 3\hat{j} + q\hat{k})$ where m is a scalar quantity. Solving we get m = - 2/3 and mq = 6 Hence p = 3m = -2 and -2q/3 = 6, or q = -9

(II) 1. Since 2X1 +1 =3 = 41 , so (1,1) $\not\in$ R. Hence R is not reflexive Again since 2X1 + 39 =/41, so ((1,39) \in R But (39,1) $\not\in$ R as 2X39 + 1 = 79 $\not=$ 4

Therefore R is not symmetric.

Further (20,1), (1,39) $\in \mathbb{R}$ as 2X20 +1 = 41 and 2X1 + 39 = 41 but (20,39) $\notin \mathbb{R}$ as 2X20 +39 $\not=$ 41

Thus R is not transitive.

Thus R is not transitive.
2. We have
$$f(x) = 5$$
 or $2x^2 - 5x + 6 = 5$
Hence $x = 5 \pm \sqrt{(-5)^2 - 4 \times 2 \times 1} = 5 \pm \sqrt{17}$
= which is clearly $\in \mathbb{R}$ (domain)

3. Let LHS $\sin^{-1}x=\alpha$, therefore $\cos^{-1}x=\pi/2-\sin^{-1}x=\pi/2-\alpha$ Therefore LHS = $\sin^{-1}\cos\alpha+\cos^{-1}\sin(\pi/2-\alpha)$

 $=\pi/2 - \alpha + \alpha = \pi/2$ (proved)

4. Let $Sin^{-1}(3/5) = \alpha$

Therefore $\sin \alpha = 3/5$ and $\cos \alpha = \sqrt{1 - \sin^2 \alpha} = 4/5$

5. By the given expression we have

x + y = t - x, or 2x = t - y-----(1) y - z = z - t, or 2z - t = y-----(2) 5 - t = z - y, or z + t = 5 + y-----(3)

And 7 + x = x + z + t, or z + t = 7---(4)

From (3) and (4) we get y = 2

Hence eq (2) reduces to 2z - t = 2 -----(5)

Solving (4) and (5) we get z = 3 and t = 4

From (1) we get x = 1

Hence solutions are x = 1, y = 2, z = 3 and t = 4

6. Solving br Cramer's rule we get
$$x = D_1 / D$$
, $y = D^2/D$ and $z = D^3/D$ -----(1)

Where $D = \begin{vmatrix} 3 & 1 & 1 \\ 1 & 1 & -1 \\ 5 & -9 & 0 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 1 \\ 4 & 2 & 0 \\ 5 & -9 & 0 \end{vmatrix} = 1x(-36 - 10) = -46$

$$D_1 = \begin{vmatrix} 10 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & -9 & 0 \end{vmatrix} = \begin{vmatrix} 10 & 1 & 1 \\ 10 & 2 & 0 \\ 1 & -9 & 0 \end{vmatrix} = 1x(-90 - 2) = -92$$

$$D_{1} = \begin{vmatrix} 10 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & -9 & 0 \end{vmatrix} = \begin{vmatrix} 10 & 1 & 1 \\ 10 & 2 & 0 \\ 1 & -9 & 0 \end{vmatrix} = 1x(-90 - 2) = -92$$

$$D_2 = \begin{vmatrix} 3 & 10 & 1 \\ 1 & 0 & -1 \\ 5 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 3 & 10 & 1 \\ 4 & 10 & 0 \\ 5 & 1 & 0 \end{vmatrix} = 1x (4 - 50) = -46$$

$$D_3 = \begin{vmatrix} 3 & 1 & 10 \\ 1 & 1 & 0 \\ 5 & -9 & 1 \end{vmatrix} = 10x(-9 - 5) + 1x(3 - 1) = -138$$

Hence form (1) we get x = 2, y = 1, and z = 3

7. The determinant of matrix
$$A = |A| = 2 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} - 5 \begin{vmatrix} 3 & 2 \\ 1 & -1 \end{vmatrix} + 3 \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}$$

$$= 2(-1-4)-5(-3-2)+3(6-1)=30$$
Now we have Adj A =
$$\begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} - \begin{vmatrix} 5 & 3 \\ 2 & -1 \end{vmatrix} + \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix}$$

$$- \begin{vmatrix} 3 & 2 \\ 1 & -1 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} - \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix}$$

$$+ \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 2 & 5 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 5 \\ 3 & 1 \end{vmatrix}$$

$$= \begin{pmatrix} -5 & 11 & 7 \\ 5 & -5 & 5 \\ 5 & 1 & -13 \end{pmatrix}$$
 Since $|A| \neq 0$ Hence A^{-1} exists and it is 1/30 (Adj A)

8. Lim
$$x \to 0$$
 $(e^x - 1)/x \cdot \log(1 + x)/x$ Sin^2x/x^2

9. Taking log of both sides we get y logx = x - y (because loge = 1) or y =
$$\frac{x}{1 + logx}$$

Differentiating both sides w.r.t x we get dy/dx = $\frac{(1 + \log x) \cdot 1 - x \cdot 1/x}{(\log e + \log x)^2} = \frac{\log x}{(\log e x)^2}$

10. $dx/dt = e^t Cos t + e^t Sin t = y + x$ Again $dy/dt = e^t Cos t + e^t (-sin t) = y - x$ Hence $dy/dx = \frac{y-x}{y+x}$

Therefore $d^2y/dx^2 = \frac{(x+y)(\frac{dy}{dx}-1)-(y-x)(\frac{dy}{dx}+1)}{(x+y)^2}$, = (x+y-y+x) dy/dx - x - y - y + x= 2x dy/dx - 2y = 2(x dy/dx - y)

11.Let a, b, c be the position vectors of the vertices A, B and C resp of the triangle ABC. Then the centroid position is 1/3 (a + b + c)
Therefore GA = (position vector of A) - (position vector of G)

= 1/3 (2 a - b - c)

Similarly GB = 1/3 (2 b - c - a) and GC = 1/3 (2 c -a - b)

Hence GA + GB + GC = 0

$$= |(-2+3)\hat{i} + (6-8)\hat{j} + (4-2)\hat{k}|$$

Therefore the requirement area of the parallelogram = $\frac{1}{2} \left| \frac{1}{a} \times \frac{1}{b} \right| = \frac{3}{2}$ square units.

Group - C

(111)

1) From the problem we get
$$\begin{vmatrix} 0 & 0 & 1 \\ x-y & y-z & z \\ x^3-y^3 & y^3-z^3 & z^3 \end{vmatrix}$$

=
$$(x-y)(y-z)[y^2 + yz + z^2) - (x^2 + xy + y^2)]$$

= $(x-y)(y-z)(z-x)(y+z+x) = 0$

2) From the given expression we have $f'(x) 3x^2 - 10x + 8$ Hence f(x) is continuous $1 \le x \le 2$ and f'(x) exists everywhere in 1 < x < 2Again f(1) = 0 and f(2) = 0

So f(1) = f(2)Hence function f(x) satisfies all the conditions of Roll's theorem. Therefore there exists at least one value of x (say x = c) between x = 1 and x = 2 such that f'(c) = 0Or $3c^2 - 4c - 6c + 8 = 0$

Solving we get c = 4/3 or c = 2

Clearly 1<4/3<2 and f'(4/3)=0. Hence Roll's theorem is verified.

3)
$$|A| = 1 \begin{vmatrix} 1 & -4 \\ 3 & -4 \end{vmatrix} = -4 + 12 = 8$$

Now $A^T X = B$ where $X = \begin{bmatrix} x \\ y \\ z \\ B \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 10 \\ 1 \end{bmatrix}$ Or $X = (A^T)^{-1} B = (A^T)^{-1} B$

$$1/8 \begin{pmatrix} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 10 \\ 1 \end{pmatrix} = 1/8 \begin{pmatrix} 3 \\ 10 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 10 \\ 1 \end{pmatrix}$$

Therefore the reqd soln is x = 3, y = 1 and z = 1

4) We have
$$a \times b = \begin{vmatrix} -2 & 1 \\ -3 & 4 \end{vmatrix} - \begin{vmatrix} 3 & 1 \\ 1 & 4 \end{vmatrix} + \begin{vmatrix} k & 3 & -2 \\ 1 & -3 \end{vmatrix}$$

= - $5\hat{i}$ - $11\hat{j}$ - $7\hat{k}$ The area of the parallelogram whose adjacent sides are a and \hat{b}

$$=\sqrt{(-5)^2+(-11)^2+(-7)^2}=\sqrt{195}$$
 square units.