

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

First Term Examination - 2018

Class: 8

SUB: Algebra Geometry **DURATION: 2 Hrs30Mins**

F.M.: 80

DATE:28.04.2018

Group -- I

1. Choose the correct answer:

 $(5 \times 1 = 5)$

The sum of the additive inverse and multiplicative inverse of 2 is :

$$(a)^{\frac{3}{2}}$$
 $(b)^{\frac{1}{2}}$ $(c)^{\frac{-3}{2}}$ $(d)^{-\frac{1}{2}}$

$$(c)^{\frac{-3}{2}}$$

$$(d) - \frac{1}{2}$$

(ii) (x-y)(x-y)-(x+y)(x+y) equals:

$$(a) 2x^2 - 4xy$$

(b)
$$2x^2 - 2y$$

(a)
$$2x^2 - 4xy$$
 (b) $2x^2 - 2y^2$ (c) $4xy + 2y^2$ (d) $-4xy$.

If $-15 \text{ mm}^4\text{p}^2$ is divided by $\frac{1}{6} \text{ m}^4\text{n}^4\text{p}^2$, the quotient is:

For a Δ ABC which one of the following is a true statement: (iv)

(a)
$$AC^2 = AB^2 + BC^2$$

(b)
$$AC = AB + BC$$
 (c) $AC > AB + BC$

(d) AC < AB + BC

- (v) The measures of three angles of a triangle are in the ratio 1: 2:3. Then, the triangle is: · (a) right-angled (b) equilateral (c) isosceles (d) obtuse angled.

Write True or False:

 $(5 \times 1 = 5)$

- (i) In \triangle ABC, <c is an acute angle, then we have AB² <BC² + AC².
- (ii) $a^m x b^m = (ab)^{2m}$.

(iii)
$$x^2 + ---$$
 is a polynomial.

- (iv) The difference of 8ab from -18ab is 10ab.
- (v) In a triangle, bisector of a vertical angle is called angle bisector of a triangle.
- 3. Fill in the blanks.

 $(5 \times 1 = 5)$

(i) If two sides of a triangle aré unequal, the longer side has

- (ii) $2^3 x (-9)^0 x 3^3$ equals to ______.
- (iii) The simplified value of p-(p-q)-q-(q-p) is ______.
- (iv) In \triangle ABC <A = 79°, <B = 31°, <C = 70°, then smallest side is ______
- (v) In SAS congruency, angle must be _____ angle.

GROUP IN

4. Answer the following.

 $(5 \times 2 = 10)$

- (i) Simplify: $4k^2 (4^{-1}k + 4k^{-2})$
- (ii) Add 3mn^2 , -5mn^2 , $\frac{2}{3}\text{mn}^2$ and -4mn^2 .
- (iii) Multiply: $5x^2 3x + 2$ by 7x.
- (iv) Find x.

- (v) The three angles of a triangle measure ($2x 10^{\circ}$), ($x + 31^{\circ}$) and ($5x + 7^{\circ}$). Find x.
- 5. Answer the following (any FIVE).

 $(5 \times 3 = 15)$

- (i) Prove that the sum of the exterior angles of a triangle taken in order is 360° .
- (ii) Express as a positive power of 3

(iii) Show that

$$(\frac{x^a}{x^b})^c \times (\frac{x^b}{x^c})^a \times \frac{x^c}{x^a}$$

- (iv) Subtract $a^2 b^2 c^2$ from the sum of $2a^2 + 3b^2 c^2$ and $4a^2 3b^2 + 5c^2$.
- (v) Multiply: $4a^2 6a + 5$ by 3a + 2.
- (vi) Divide: $14x^2 53x + 45$ by 7x 9.
- (vii) If $x = 2^k$ and $y = 2^{k+3}$, what is the value of $\frac{x}{y}$?.

Group - C

6. Answer any eight.

5x8=40

- a) Divide: $(x^2 + 8x + 15)$ by (x + 3)
- b) Multiply: $(4a^2 6a + 5)$ by (3a + 2)
- c) Add together: $7a^3 3a^2b + 5ab^2 b^3$, $2a^3 3ab^2 4a^2b$ and $b^3 4a^3 + ab^2$.
- d) Subtract: $23xy 6x^2 + 8a^2 1$ from $35x^2 + 8xy 4b^2 2$.
- e) Divide: $18x^4y^2 + 15x^2y^2 27x^2y$ by -3xy.
- f) Classify triangles based on angles.
- g) What are the differences between Median and altitude of a triangle. Give diagram.
- h) Prove that if two sides of a triangle are equal, then the angles opposite those sides are equal.
- i) The adjoining figure shows a triangle ABC with <ACD = 105° and <CAB = 55°. Show that AB > AC.

j) Simplify: $[(^2/_3)^2]^3 \times (^1/_3)^{-4} \times 3^{-1} \times ^1/_6$

ST. LAWRENCE HIGH SCHOOL

FIRST TERM - 2018

Subject: ALGEBRA & GEOMETRY

Class: VIII

F.M. 80

MODEL ANSWERS

Group -I

1. Choose the correct answer:

 $(5 \times 1 = 5)$

The sum of the additive inverse and multiplicative inverse of 2 is:

$$(a)^{\frac{3}{2}}(b)^{\frac{1}{2}}(c)^{\frac{-3}{2}}(d)^{-\frac{1}{2}}$$

Sol.: (c) -
$$\frac{3}{2}$$

(ii) (x-y)(x-y) - (x+y)(x+y) equals:

$$(a) 2x^2 - 4xy$$

(b)
$$2x^2 - 2y^2$$

(a)
$$2x^2 - 4xy$$
 (b) $2x^2 - 2y^2$ (c) $4xy + 2y^2$ (d) $-4xy$.

If $-15 \text{ mn}^4\text{p}^2$ is divided by $\frac{1}{6} \text{ m}^4\text{n}^4\text{p}^2$, the quotient is: (iii)

$$-5$$
 -90 (a) ---- (b) ---- (c) -90m³ (d) none of them $3m^3m^3$

-90

Sol.: (b) -----

 m^3

For a Δ ABC which one of the following is a true statement:

(a)
$$AC^2 = AB^2 + BC^2$$
 (b) $AC = AB + BC$ (c) $AC > AB + BC$

(d)AC < AB + BC

- The measures of three angles of a triangle are in the ratio 1: 2:3. Then, the triangle is:
- (a) right-angled (b) equilateral (c) isosceles (d) obtuse angled.

Sol.: (a) right-angled.

2. Write True or False:

$$(5 \times 1 = 5)$$

- (i) In \triangle ABC, <c is an acute angle, then we have AB² <BC² + AC². Sol.: True
- (ii) $a^m \times b^m = (ab)^{2m}$. Sol.: False
- (iii) $x^2 + ----$ is a polynomial. Sol.: False x^2
 - (iv) The difference of 8ab from -18ab is 10ab. Sol. False
- (v) In a triangle exterior angle is equal to two opposite interior angles. Sol.: True
- 3. Fill in the blanks.

$$(5 \times 1 = 5)$$

- (i) If two sides of a triangle are unequal, the longer side has _____ angle opposite to it. Sol.: Greater
- (ii) $2^3 \times (-9)^0 \times 3^3$ equals to ______. Sol.: 216
- (iii) The simplified value of p-(p-q)-q-(q-p) is ______. Sol.: p-q.
- (iv) In \triangle ABC <A = 79° , <B = 31° , <C = 70° , then smallest side is ______. Sol.: AC
- (v) In SAS congruency, angle must be _____ angle. Sol.: Including

GROUP II

- 4. Answer the following. $(5 \times 2 = 10)$
 - (i) Simplify: $4k^2 (4^{-1}k + 4k^{-2})$. k 4Sol.: $4k^2 (----++----)$

$$K^3 + 16$$

$$= 4k^2 \times ---- = k^3 + 16$$
$$4k^2$$

(ii) Add $3mn^2$, - $5mn^2$, $\frac{2}{3}mn^2$ and $-4mn^2$.

Sol.:
$$(\frac{9-15+2-12}{3}) \text{mn}^2 = \frac{-16}{3} \text{mn}^2$$

(iii) Multiply:
$$5x^2 - 3x + 2$$
 by 7x.

Sol.:
$$35x^3 - 21x^2 + 14x$$

(iv) Find x.

Sol.:
$$<$$
ACB = $180^{0} - 105^{0} = 75^{0}$
 $<$ EAC = $x = 70^{0} + 75^{0} = 145^{0}$

(v) The three angles of a triangle measure ($2x - 10^{\circ}$), ($x + 31^{\circ}$) and ($5x + 7^{\circ}$). Find x.

Sol.:
$$2x - 10 + x + 31 + 5x + 7 = 180^{\circ}$$

Or $8x + 28 = 180^{\circ}$
Or $x = 19^{\circ}$

(i) Prove that the sum of the exterior angles of a triangle taken in order is 360°.

Sol.: Let exterior angle of
$$<$$
A = a^0 be x^0

"

 $<$ B = b^0 be y^0

"

 $<$ C = c^2 be z^0

Now x = a + b, y = b + c, z = c + a

 \therefore x + y + z = 2 (a + b + c) = 2 x 180^0 = 360^0 .

(ii) Express as a positive power of 3

Soln:
$$\frac{3^{-2} \times 3^{-6}}{3^{-8} \times 3^{6}} = \frac{3^{-8}}{3^{-2}} = \frac{1}{3^{6}}$$

$$x^{a}$$
 x^{b} x^{c} $(----)^{c}$ $(x^{c}$ $(----)^{c}$ $(x^{c}$ x^{c} x^{c} x^{c} x^{c} x^{c} x^{c} x^{c} x^{c} x^{c}

Sol.:
$$x^{ac-bc+ab-ac+bc-ab} = x^0 = 1$$
.

(iv) Subtract
$$a^2 - b^2 - c^2$$
 from the sum of $2a^2 + 3b^2 - c^2$ and $4a^2 - 3b^2 + 5c^2$.

Sol.:
$$2a^2 + 3b^2 - c^2$$

 $4a^2 - 3b^2 + 5c^2$

$$6a^2 + 0 + 4c^2$$

 $-a^2 - b^2 - c^2$

$$5a^2 + b^2 + 5c^2$$

(v) Multiply: $4a^2 - 6a + 5$ by 3a + 2.

Sol.:
$$(4a^2 - 6a + 5) (3a + 2)$$

= $12a^3 - 18a^2 + 15a + 8a^2 - 12a + 10$
= $12a^3 - 10a^2 + 3a + 10$

(vi) Divide:
$$14x^2 - 53x + 45$$
 by $7x - 9$.

Sol.: Quotient -2x -5 and reminder = 0

(vii) If
$$x = 2^k$$
 and $y = 2^{k+3}$, what is the value of $\frac{x}{y}$?.

Sol.:
$$\frac{x}{y} = ---- = \frac{1}{8}$$
.

$$2^k \times 2^3 \qquad 2^3$$

Group - C

6. a)
$$x+3$$
) $x^2+8x+15(x+5)$

$$- x^{2} + 3x$$

5x + 15

$$5x + 15$$

 $5x + 15$

6. b)
$$(4a^2 - 6a + 5) (3a + 2)$$

= 3a $(4a^2 - 6a + 5) + 2 (4a^2 - 6a + 5)$
= $12a^3 - 18a^2 + 15a + 8a^2 - 12a + 10$
= $12a^3 - 10a^2 + 3a + 10$

d)
$$35 x^2 + 8xy - 4b^2 - 2$$

 $-6x^2 + 23 xy - 1 + 8a^2$
 $+ - + -$
 $-15xy - 4b^2 - 1 - 8a^2$

e)
$$\frac{18 \times^4 y^2}{-3xy} + \frac{15x^2 y^2}{-3xy} - \frac{27x^2 y}{-3xy} - \frac{3xy}{-5xy} + \frac{9x}{-3xy}$$

f) Acute triangle, obtuse triangle, and Right angled triangle.
 Right angled triangle.
 Definition and diagram required.

g) <u>Median:</u>It is a line segment joining a vertex to the mid-point of the side opposite to that vertex. The point at which the medians of a triangle meet is called centroid of the triangle. All there medians of a triangle meet at a point inside the triangle.

Altitude: It is a perpendicular drawn from a vertex to the opposite side (produced if necessary).

The point of intersection of the altitudes of a triangle is called orthocentre.

The point of intersection of the altitudes may lie inside or outside the triangle.

h) Isosceles \triangle ABC is given and AB = BC. We wish to prove that <A = <C. We begin by drawing the bisector of <B, namely BD

Statements	Reasons
AB = CB	Given
<a <b<="" =="" td=""><td>Construction</td>	Construction
BD=BD	Common
. · . △ABD & △CBD is congruent	(SAS)
. · . <a <c<="" =="" td=""><td>(Corr. <s congruent="" of="" s<="" td="" △=""></s></td>	(Corr. <s congruent="" of="" s<="" td="" △=""></s>

<ACB =180 $^{\circ}$ -105 $^{\circ}$ =75 $^{\circ}$ Linear pair In \triangle ABC, by the angle sum property of a triangle <ABC + <CAB + <ABC= 180°

 \rightarrow 75° + 55° + <ABC = 180°

 \rightarrow 130° + <ABC = 180°

 \rightarrow <ABC=180°-130°=50° Now, <ACB=75° and <ABC=50°

→ <ACB ><ABC → AB >AC

. . Side opposite to <ACB is AB.

D

Side opposite greater angle is longer.

J) Simplify: $[(2/3)^2]^3 \times (1/3) - ^4 \times 3^{-1} \times 1/6$ = $(2/3)^6 \times (3)^4 \times 1/3 \times 1/6$ = $2^6/3^6 \times 3^4 \times 1/3 \times 1/6$ = $2^6/3^6 \times 3^4 \times 1/3 \times 1/6$ = $2^6/3^6 \times 3^4 \times 1/3 \times 1/3 \times 1/3$ = $2^6 \times 3^4 = 2^{6-1} = 2^5/3^4 = 32/81$ $3^8 \times 2 \times 3^{8-4} = 2^5/3^4 = 32/81$