

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

Second Term Examination - 2018

Sub	:Algebra &Geo	ometry
Dur	ation:2hrs 30	Mins.

Class:8

FM:80

U	<u>uration:Znrs</u>	30 Mills.					Date. 07.00.2020
•				Group-	A		
(1)	Choose the corr	ect option:-					(5 X 1 = 5)
1) V	What is the co ef			oduct (7x² - 5	$(x^2 +$	3y)?	
a) -	16	b) 16	c) 26	d) -26			
2) [What is the solu	tion cat to Av .	6 < 90	whore v is a r	nultinle (of 4 less than	20?
		b) { 8,16,20		c) { 8,	16 }	d) { 4	.8.16,20}
a) ((+,0,10)	6) (0,10,20	,	٠, (٣,	~~)	.,(
3) ′	The fourth angle	e of the quadri	lateral t	hat has three	acute ang	gles is	
		b) right		c) obtuse	d	l) straight	
43		1 6 4 1	c		om and ti	ha langth of	the chard is 10 cm. The
	Distance of a cho diameter of the		from the	e centre is 12	cm and ti	ne length of	the chord is 10 cm. The
	22 cm			c) 13 cm	(d) 44 cm	
•		ŕ					
5)	In a circle if the	angle at the co	entre is 8	30°, then the v	alue of t	he angle at t	he circumference standing
	on the same seg				**		
a)	80°	c) 40°	c) 180	0	d) 160°	'	
(H)	Fill in the blar	ake .	٠				(5 X 1 = 5)
(11)	riii iii tiic biai	into					("
1) ($(a - b)^2 + 2ab =$						
2) a	a(b-c)-d(c-l	b) =	-				
3) I	f the sides of a q	uadrilateral a	re prodı	iced in order,	the sum	of the exteri	or angles so formed is
4) 7		-lea ef e evelie	aua deile	storal ara			
-	The opposite ang Angle in a semi c	-		aterarare		•	
<i>3) r</i>	ingie in a seini e						
(III) Write True or False :-						(5 X 1 = 5)	
1) A constant is a polynomial of degree 0.					•		
	On dividing p/3				000		
3) <i>E</i>	ABCD is a quadr	ilateral with a	ngles 90	$^{\circ}$, 90° , 110° ,	80°. int of the	s chard is no	rnandicular to
	The line joining thechord.	the centre of t	ne circie	to the mape	THE OF THE	e chora is pe	i penaleular to
	25q² - 40q + 16	is a perfect so	uare.				
~,·	44	1					

Group - B

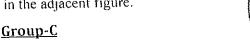
(For this group explanation and diagrams are needed where applicable)

IV.	Very Sho	ort Answer Type Questions.	5x2=10
i)	Solve:	$\frac{x}{2x-3}=1.$	

- ii) Find the solution set for 'y', when $\frac{y}{2} + 6 < 11$; and y is not a prime number.
- iii) Without actual multiplication, find the square of 99.99
- iv) Determine the value of x, if $16x = (62)^2 (26)^2$.
- v) Sum of three consecutive even numbers is 90. Find out the numbers.

- What should be added with (9 6x) to make it a perfect square number? i)
- Expand: $\left(x^2 \frac{1}{2v^2}\right)^2$. ii)

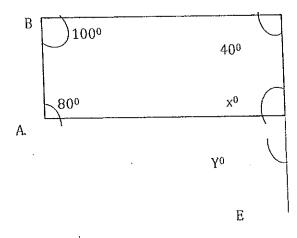
5


Find a number whose one-fifth part increased by 4 is equal to its one-fourth part diminished by 10. iii)

Solve: $\frac{(1-3y)(4-y)}{(2-3y)(1-y)} = 1$.

Solve the in-equation and show the solution on a number line : 13 - y < 9. iv)

4 years ago, the ratio of the ages of A and B was 2:3 and after 4 years it becomes 5:7. Find their present ages.


Calculate the angles < a and < b as shown in the adjacent figure. v)

 $5 \times 8 = 40$

6. Attempt any eight questions:

- a) The denominator of a fraction is 3 more than its numerator. If the numerator is increased by 7 and the denominator is decreased by 2 the fraction is equal to 2. What is the sum of the numerator and denominator of the fraction?
- b) The present age of a father is 3 years more than three times the age of his son. 3 years hence, father's age will be 10 years more than twice the age of the son. What is the father's present age?
- c) A motor boat goes downstream and covers a distance between two places in 3 hours. It covers the same distance upstream in 4 hours. If the stream flows at 2 km/h, find the speed of the motor boat downstream.
- d) Find the value of $x^4 + 1/x^4$, when i) x+1/x = 3, ii) x-1/x = 4.
- e) The angles of a quadrilateral are in the ratio 2:3:5:8. Find the measure of each of the four angles.
- f) Prove that sum of the angles of a quadrilateral is 360°
- g) In a circle of radius 13 cm, a chord is drawn at a distance of 12 cm from the centre. Find the length of the chord.
- h) In the adjoining figure, O is the centre of the circle and <Q = 60° . Find <P.
- 1) Multiply $(x^2 + xy y^2)$ by $(x^2 xy + y^2)$
- j) Find the value of x^0 and y^0 from the following figure:

ST. LAWRENCE HIGH SCH

Model Answer 2nd Term Exam - 2018

Sub: Algebra

Class: VIII

F. M.: 80

Group - A

1. 1) b)16

2) a) $\{4,8,16\}$

3) c)obtuse

4)b)26cm

5)c) 40^{0}

3.**36**0°

4. Supplementary

5. Right

III. 1. True

2. False

3. False

4. True

5.True

Group - B

IV. i). Given,
$$\frac{x}{2x-3} = 1$$

or, $x = 2x - 3$ [by cross multiplication]
or, $2x - 3 = x$
or, $2x - x = 3$
or, $x = 3$ (Ans)

ii) Given,
$$\frac{y}{2} + 6 < 11$$
;
or, $\frac{y}{2} < 11 - 6$
or, $y < 10$
Hence the solution set for y will be $y = \{1,4,6,8,9\}$ (Ans)

iii)
$$(99.99)^2$$

= $(100 - 0.01)^2$
= $(100)^2 - 2 \times 100 \times 0.01 + (0.01)^2$
= $10000 - 2 + 0.0001$
= 9998.0001 (Ans)

iv) Given,
$$16x = (62)^2 - (26)^2$$

or, $16x = (62 + 26)(62 - 26)$
or, $x = \frac{88 \times 36}{16}$
or, $x = 198$ (Ans)

Let the numbers be (x-2), x and (x+2). v) Then, according to the sum, (x-2) + x + (x+2) = 90Or, 3x = 90Or, x = 30

So, the numbers are 28, 30 and 32. (Ans)

Given expression is (9-6x). It can also be written as $3^2-2\times 3\times x$ V. i) Now, if we add $'+x^{2}$ to it, it becomes, $3^2-2.3.x+x^2=(3-x)^2$, which is a perfect square number. So, $' + x^{2}$ should be added with (9 - 6x) to make it a perfect square number.

Let the number be x. According to the sum, the equation will be – iii)

$$\frac{x}{5} + 4 = \frac{x}{4} - 10$$

Or,
$$\frac{x}{4} - 10 = \frac{x}{5} + 4$$

Or,
$$\frac{x}{4} - \frac{x}{5} = 4 + 10$$

Or,
$$\frac{5x-4x}{20} = 14$$

Or,
$$\frac{x}{20} = 14$$

Or,
$$x = 280$$

Hence the required number is 280. (Ans).

 \mathbf{Or}

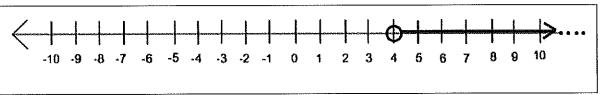
$$\frac{(1-3y)(4-y)}{(2-3y)(1-y)} = 1$$

Or,
$$(1-3y)(4-y) = (2-3y)(1-y)$$
 [by cross multiplication]

Or,
$$4 - y - 12y + 3y^2 = 2 - 2y - 3y + 3y^2$$

Or,
$$-y - 12y + 3y^2 + 2y + 3y - 3y^2 = 2 - 4$$

Or,
$$-8y = -2$$


Or,
$$y = \frac{1}{4}$$
 (Ans)

iv)
$$13 - y < 9$$
.

Or,
$$9 > 13 - y$$

Or,
$$y > 13 - 9$$

i.e. y will be greater than 4 and extended to $+\infty$. So the number line will be – Or, y > 4

\mathbf{Or}

Let their present ages are 5x and 7x. So, 4 years ago, their ages were 5x - 4 and 7x - 4.

Then, by the sum, $\left(\frac{5x-4}{7x-4}\right) = \frac{2}{3}$

Or,
$$15x - 12 = 14x - 8$$

Or,
$$x = 4$$

So, their present ages are : Age of A is = 5x = 5.4 = 20 years

Age of B is=
$$7X = 7.4 = 28 \ years$$
 (Ans)

 $< a = \frac{120^{\circ}}{2} = 60^{\circ}$ [as < a is drawn from the same segment on the other part of the circle.] < a = < b [as they are drawn from the same segment on the crcumference] So, $< a = < b = 60^{\circ}$ (Ans)

Group - C

6.a) Let the fraction be x/(x+3)

B.T.P.
$$\underline{x+7}$$
= 2 or, x = 5
X+3-2

Therefore, sum of numerator and denominator is 5+8=13 (Ans)

b) Let son's present age be x years

Then, fathers present age is (3x+3) years

After 3 years son's age = (x+3) years

After 3 years father's age is { (3x+3) +3 } years

B.T.P
$$(3x+3) + 3 = 2(x+3) + 10$$

Or,
$$x = 10$$

Hence, fathers present age = $\{3 (10+3)\}$ = 33 years (Ans)

c) Let the speed of motor boat in still water be x km / hr

Speed of stream = 2 km / hr

So, speed of motor boat down stream= x+2 km / hr

Speed of motor boat upstream = x-2 km / hr

B.T.P. 3 (
$$x+2$$
) = 4 ($x-2$) [Distance = speed x time]

Or,
$$x = 14 \text{ km / hr}$$

Therefore, speed of boat down stream = 16 km / hr (Ans)

d) i)
$$x + 1/x = 3$$

or,
$$(x+1/x)^2 = 9$$

or,
$$x^2 + 1/x^2 = 7$$

or,
$$(x^2 + 1/x^2)^2 = 49$$

or,
$$x^4 + 1/x^4 = 47$$
 (Ans)

ii)
$$x-1/x = 4$$

or,
$$x^2 + 1/x^2 = 18$$

or,
$$x^4 + 1/x^4 = 322$$

e) Let the angles quadrilateral be 2x, 3x, 5x and 8x

B.T.P.
$$2x + 3x + 5x + 8x = 360^{\circ}$$
 or, $x = 20^{\circ}$

Therefore, the required angles are 40° , 60° , 100° and 160° (Ans)

f) Students will write the theorem.

g)
$$OA$$
 (radius) = 13 cm.

And
$$OD = 12 \text{ cm}$$

Therefore,
$$OA^2 = OD^2 + AD^2$$
 or, $(13)^2 - (12)^2 = AD^2$

Or,
$$AD = 5$$
 cm.

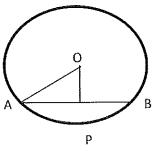
Hence, AB = 2AD = 10 cm (Ans)

h)
$$< Q = 60^{\circ}$$
 (given)

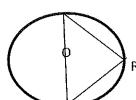
$$<$$
R = 90° (angle in a semi circle)

We know
$$< P + < Q + < R = 180^{\circ}$$

Or,
$$<$$
P = $180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$ (Ans)


i)
$$(x^2 + xy - y^2) (x^2 - xy + y^2)$$

 $\{x^2 + (xy - y^2)\}\{x^2 - (xy - y^2)\}$
 $= x^4 - (xy - y^2)^2$
 $= x^4 - x^2y^2 - y^4 + 2xy^3$ (Ans)


j)
$$x^0 + 40^0 + 80^0 + 100^0 = 360^0$$

or,
$$X^0 = 140^0$$

Again,
$$y^0 = 180^0 - 140^0 = 40^0$$

Hence, $x = 140^{\circ}$ and $y = 40^{\circ}$ (Ans)

