

St. Lawrence High School

A Jesuit Christian Minority Institution

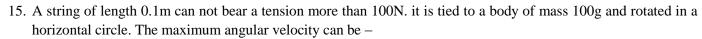
Term: 1st
Work Sheet – 20

Class-XI

Subject – Physics

Date - 08.07.20

Chapter - Circular motion


Topic – Centripetal acceleration & centripetal force

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. A particle of mass m describes a circular motion of radius r. the centripetal acceleration of the particle is $\frac{4}{r^2}$. The momentum of the particle is
 - a. 2m/r
 - b. $\frac{2m}{\sqrt{r}}$
 - c. $\frac{4m}{\sqrt{r}}$
 - d. $\frac{4m}{r}$
- 2. A particle is moving around a circular path of radius r with uniform angular speed w. The acceleration of the particle is
 - a. $\frac{w^2}{r}$
 - b. $\frac{w}{r}$
 - c. vw
 - d. vr
- 3. A mass of 2kg is whirled in a horizontal circle by means of a string at an initial speed of 5r.p.m. keeping the radius constant the tension in the in the string is doubled, the new speed is nearly
 - a. 7r.p.m
 - b. 14r.p.m
 - c. 10r.p.m
 - d. 20r.p.m
- 4. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity. The motion of the particle takes place in a plane. It follows that
 - a. Its velocity is constant
 - b. Its K.E. is constant
 - c. Its acceleration is constant
 - d. It moves in a straight line
- 5. A stone is tied to one end of string 50cm long and is whirled in a horizontal circle with constant speed. If stone makes 10 revolutions in 20s, then what is the magnitude of acceleration of the stone?
 - a. 493 m/s^2
 - b. 720 m/s^2
 - c. 860 m/s^2
 - d. 990 m/s^2
- 6. For a particle in a non uniform accelerated circular motion
 - a. Velocity is radial and acceleration is transverse
 - b. Velocity is transverse and acceleration radial
 - c. Velocity is radial and acceleration has both the components
 - d. Velocity is transverse and acceleration has both the components

7.	Two particles having mass M and m are moving in a circular path of radius R and r respectively. If their time
	period are same then the ratio of angular velocity will be –
	a. $\frac{r}{R}$
	b. $\frac{R}{r}$
	r c. 1
	_
	\mathbf{V}^{T}
8.	A car moving with a speed 30m/s on a circular path of radius 500m. Its speed is increasing at the rate of 2m/s ² .
	The acceleration of the car is $-$ a. 9.8 m/s^2
	a. 9.8 m/s b. 1.8 m/s ²
	c. 2 m/s^2
	d. 2.7 m/s^2 .
9.	If a particle is rotating uniformly in a horizontal circle, then –
	a. No force is acting on the particle
	b. Velocity of particle is constant
	c. Acceleration of the particle is zerod. No work is done
10	A particle moves along a circle of radius $\frac{20}{\pi}$ m with constant tangential acceleration. If the velocity of the particle
10.	is 80m/s at the end of the second revolution after motion has begun, the tangential acceleration is –
	a. 40 m/s ² .
	b. 640 m/s ² .
	c. 160 m/s^2 .
	d. $40\pi \text{ m/s}^2$.
11.	The linear and angular acceleration of a particle are 10 m/s ² and 5rad/s ² respectively. It will be at a distance from
	the axis of rotation –
	a. 50m b. 0.5m
	c. 1m
	d. 2m
12.	The angular acceleration of particle moving along a circular path with uniform speed -
	a. Uniform but non zero
	b. Zero
	c. Variabled. As cannot be predicted from given information
13.	If the speed and radius both are tripled for a body moving on a circular path, then the new centripetal force will
	be –
	a. Doubled
	b. Same
	c. Triple
1.4	d. One third When a body moves with a constant speed along a circle –
1→.	a. No acceleration is present
	b. No force acts
	c. Its velocity remains constant
	d. No work is done on it

- a. 100rad/s
- b. 1000rad/s
- c. 10000rad/s
- d. 0.1rad/s

Name of the teacher – Soumitra Maity