

ST. LAWRENCE HIGH SCHOOL

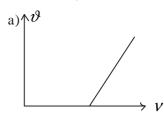
A JESUIT CHRISTIAN MINORITY INSTITUTION

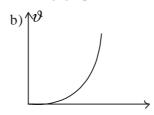
WORK SHEET 6

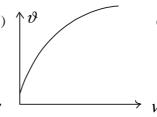
Subject: PHYSICS

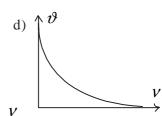
CLASS: XII Date: 9.5.20

Topic: E.P. energy, E.P.E. for 3 charge system, work done in rotating Dipole, vel. of *q* subject to potential.


Multiple Choice Question:


Chapter: Electrostatics


 $1 \times 15 = 15$


- 1. Give the dimension of electric potential
 - (a) $[ML^2T^{-3}A^{-1}]$
- (b) [MLTA]
- (c) $[MLT^{-3}A^{-1}]$
- (d) $[M^{-1}L^{-1}TA]$
- 2. A particle of mass 1g and having charge 10^{-8} C is passed through a potential difference of 600V. What will be its kinetic energy?
 - (a) $-6x10^6$ erg.
- (b) $-6x10^6$ J
- (c) $6x10^6$ erg
- (d) $6x10^6$ J
- 3. The charges +q, -4q and +2q are placed at the angular points of an equilateral triangle of side 0.15 m. If $q = 1\mu$ C. What is the mutual potential energy of the system?
 - (a) 0.4 J

- (b) 0.5 J
- (c) -0.6 J
- (d) 0.8 J
- 4. A electric dipole moment of P is placed in the position of stable equilibrium in electric field of intensity, E. It is rotated through an angle θ from the initial position. The potential energy of the electric dipole in the final position is :
 - (a) PESin θ
- (b) –PESin θ
- (c) $PE(1 Cos \theta)$
- (d) PECos θ
- 5. The velocity v acquired by an electron starting from rest and moving through a potential difference V is shown by which of the following graphs?

- 6. If an electron is brought towards another electron, the electric potential energy of the system:
 - (a) increases

(b) decreases

(c) become zero

- (d) remain the same.
- 7. When is the potential energy of an electric dipole maximum, when placed in a uniform electric field?
 - (a) When it is aligned antiparallal to the electric field.
 - (b) When it is aligned parallal to the electric field.
 - (c) When it is aligned perpendicular to the electric field.
 - (d) When it is aligned 60° to the electric field.

10.	_	If its dipole moment	charge as q and its dipole moves is along the direction of the (c) Zero and minimum	-
11.	Three $+Q$ point charges are placed at the angular points of a triangle of side x . If these charges are sent to infinity what will be their total kinetic energy?			
	(a) 3Q <i>x</i> .	(b) $3\frac{Q^2}{x}$	(c) $\frac{Q^2}{x}$	(d) Q^2x
12.	Two charges q_1 and q_2 are placed 30 cm apart as show in figure. A third charge q_3 is moved along the arc			
	of a circle of radius 40 cm from C to D. The change in the potential energy of the system is $\frac{q_3K}{4\pi\epsilon_0}$, where			
	K is:	$C \stackrel{q_3}{-}$		0
		40 cm A 30 cm	q_2	
	(a) 8q ₁	(b) $6q_1$	(c) $8q_2$	(d) $6q_2$
13.	Identical chargges $(-q)$ are placed at each corner of a cube of side b. Then the electrostatic potantial energy of chage $(+q)$ placed at the centre of the cube will be:			
	$(a) \ \frac{-4\sqrt{2}q^2}{\pi \epsilon_0}$	(b) $\frac{8\sqrt{2}q^2}{\pi \epsilon_0 b}$	$(c) \frac{-4q^2}{\sqrt{3}\pi \epsilon_0 b}$	$(d) \ \frac{8\sqrt{2}q^2}{4\pi\epsilon_0 b}$
14.	1000 identical water drops each of radius r and each having charge q are combined into a single drop. If			
	ν be potential of each small drop and V be the potential of the large drop, then the ratio $\frac{V}{\nu}$ is			
	(a) $\frac{1}{1000}$	(b) $\frac{1}{100}$	(c) 1000	(d) 100
15.	An Electron of mass m and charge e is accelarated from rest through a Potential difference V in vacuum. Its final speed will be:			
	(a) $\sqrt{\frac{2eV}{m}}$	(b) $\sqrt{\frac{eV}{m}}$	(c) $\frac{eV}{m}$	(d) $\frac{2eV}{m}$

2

8. An α -particle and a proton are accelarated at same potential difference from rest. Find the ratio of their

9. An electric dipole of moment $\stackrel{\rightarrow}{P}$ is lying along a uniform electric field $\stackrel{\rightarrow}{E}$. The work done in rotating

(b) 1:1

(b) PE/2

(c) $1:\sqrt{2}$

(c) 2PE

(d) 1:2

(d) PE

Ambarnath Banerjee

final volocities:

the dipole by 60° is:

(a) $\sqrt{2}:1$

(a) $\sqrt{2}$ PE