

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

Solution of Worksheet-24

SUBJECT - MATHEMATICS

2nd-term

Chapter: Calculus Class: XII

Topic : Definite integral as an area Date: 09.11.2020

Choose the correct option

 $(1 \times 15 = 15)$

- 1. The area bounded by the straight lines 5x = 4y, x = 4 and x-axis (in square unit) is
 - a) 16
 - b) 8
 - c) 4
 - d) 10
- 2. The area bounded by the curve $y^2 = 4x$, & x = 4 and x-axis (in square unit) is
 - a) 7
 - b) 32
 - c) $\frac{32}{3}$
 - d) $\frac{32}{9}$
- 3. The area bounded by the curve $y=\cos x$, x-axis and the two ordinates x=0 & $x=2\pi$ (in square unit) is
 - a) 4
 - b) -4
 - c) 2
 - d) -2
- 4. The area bounded by the curve $y=\sin x$, $y=\cos x$, x-axis and the two ordinates x=0 & $x=\frac{\pi}{2}$ (in square unit) is
 - a) 16
 - b) 4
 - c) 6
 - d) None of these.
- 5. The area bounded by the straight lines x + 2y = 8, x = 2, x = 4 (in square unit) is
 - a) 2
 - b) 3
 - c) 4
 - d) 5

 6. The area bounded by the curve x² = y, the straight line y = 4 and y-axis (in square unit) is- a) 8 b) 9 c) 11 d) None of these.
7. The area above the x-axis bounded by the straight lines $y=2x+1$, $y=0$, $x=2$, $x=4$ (in square unit) is – a) 28 b) 32 c) 30 d) 14
8. The area bounded by the curve $y^2 = 16x$, the straight lines $x = 4$ (in square unit) isa) 128 b) 120 c) 40 d) $\frac{128}{3}$
 9. The area (in square unit) bounded by x-axis and one arc of the sine curve y = sin x between (0,0) and (π, 0) is - a) 1 b) 2 c) 3 d) 4
10. The area (in square unit) bounded by x-axis and one arc of the cosine curve $y = \cos x$ between $(\frac{\pi}{2}, 0)$ and $(\frac{3\pi}{2}, 0)$ is - a) 2 b) 3 c) 4 d) 5
 11. Find the area(in square unit) in the second quadrant bounded by the curve y = x³ + 8 and the co-ordinate axes - a) 10 b) 11 c) 12 d) 13
12. The area bounded by the straight lines $x + 2y = 6$, $x = 0$, $x = y$ (in square unit) is – a) 1 b) 2 c) 3 d) 4

13. The area bounded by the straight lines $2x + y = 6$, $y = 0$, $y = 4x$ (in square unit) is - a) 6 b) 8 c) 10 d) 13
 14. Find the area (in square unit) of the triangle PQR whose vertices are P(2, 1); Q(3, 4); R(5, 2) - a) 4 b) 6 c) 8 d) 9
15. Find the area (in square unit) enclosed by $x^2 = 4ay$, $y^2 = 4ax - a$) πa^2 b) π^3 c) $\frac{16}{3}a^4$ d) $\frac{16}{3}a^2$
<u>Prepared by :-</u>
Mr. SUKUMAR MANDAL (SkM).