ST. LAWRENCE HIGH SCHOOL

A Jesuit Christian minority Institution

Subject: Mathematics Class- X
Date:16/11/2020

Worksheet-4

Chapter- Similarity

Topic- application of theorems of similarity and Pythagoras theorem

1. Choose the correct alternative. $1 \times 15=15$
i) In triangle $A B C, A D$ is perpendicular on $B C$. If $\angle A C B=\square B A D, A C=8 \mathrm{~cm}$,$A B=16 \mathrm{~cm} A D=3 \mathrm{~cm}$. Then write the length of $B D$ i) 8 cm ii) 6 cm iii) 9 cm iv) none of these
ii) In the triangle $\mathrm{ABC}, \triangle B=90^{\circ}$ and BD is perpendicular on AC . If $\mathrm{AB}=5.7 \mathrm{~cm}$, $\mathrm{BD}=3.8 \mathrm{~cm}$ and $\mathrm{CD}=5.4 \mathrm{~cm}$.Find AD i)) .674 cm ii) 1.674 cm iii) 2.674 cm iv) none of these
iii) In triangle $\mathrm{ABC}, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{CA}=7.5 \mathrm{~cm}$. In triangle DEF the corresponding side of BC is $\mathrm{EF}, \mathrm{EF}=8 \mathrm{~cm}$ and if triangle DEF is similar to triangle ABC , then perimeter of triangle DEF will be i) 30 cm ii) 22.5 cm iii) 27 cm iv) none of these
iv) In any right angled triangle the area of the square drawn on the hypotenuse is equal to the \qquad of the areas of the squares drawn on other 2 sides.
i) Product
ii) difference
iii) sum
iv) none of these
v) If in a triangle area of a square drawn on one side is equal to the sum of the areas of squares drawn on other 2 sides, then the angle opposite to the first side is i) right angle ii) 60° iii) 45° iv) none of these
vi) Which are the cases where the triangle is a right triangle?
i) $9 \mathrm{~cm}, 11 \mathrm{~cm}, 6 \mathrm{~cm}$ ii) $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$ iii) $6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm}$ iv) both (2) and (3)
vii) In a garden a ladder of 25 m length is inclined to a guardwall at the height of 24 m above the ground. Calculate distance of the foot of the ladder from the
$\begin{array}{lllll}\text { guardwall? } & \text { i) } 6 \mathrm{~cm} & \text { ii) } 7 \mathrm{~cm} & \text { iii) } 7 \mathrm{~m} & \text { iv) } 9 \mathrm{~m}\end{array}$
viii) If the length of a rhombus are 12 cm and 16 cm respectively, then write the length of one side of the rhombus.
$\begin{array}{llll}\text { i) } 10 \mathrm{~cm} & \text { ii) } 6 \mathrm{~cm} & \text { iii) } 8 \mathrm{~cm} & \text { iv) none of these }\end{array}$
ix) A person goes 24 m west from a place and then he goes 10 m north. The distance of the person from starting point is i) 34 m ii) 17 m iii) 25 m
iv) 26 m
x) If lengths of 2 diagonals of a rhombus are 24 cm and 10 cm respectively.
i) 52 cm ii) 26 cm iii) 25 cm iv) none of these
xi) If ABC is an equilateral triangle and AD is perpendicular on BC . Then $\mathrm{AD}^{2}=$
i) $3 / 2 \mathrm{DC}^{2}$
ii) $2 \mathrm{DC}^{2}$
iii) $3 \mathrm{DC}^{2}$
iv) $4 \mathrm{DC}^{2}$
xii) Two rods of the length 13 m and 7 m are placed perpendicularly on the ground and distance between their foots is 8 m . The distance between the two vertices is i) 9 m ii) 10 m iii) 11 m iv) 12 m
xiii) In an isosceles right triangle if 2 equal sides are $4 \sqrt{2} \mathrm{~cm}$. Then length of hypotenuse is \qquad _.
i) $10 \mathrm{~cm} \quad$ ii) 9 cm iii) $8 \mathrm{~cm} \quad$ iv) none of these
xiv) In ABC triangle If $\mathrm{AB}=(2 \mathrm{a}-1) \mathrm{cm} . \mathrm{AC}=2 \sqrt{2 a} \mathrm{~cm}$ and $\mathrm{BC}=(2 \mathrm{a}+1) \mathrm{cm}$. Then find the value of angle $B A C$.
i) 60° ii) 90° iii) 45° iv) none of these
xv) If the ratio of the lengths of 3 sides of a triangle is 3:4:5 then the triangle is i) Equilateral triangle ii) right angled triangle iii) isosceles triangle iv) none of these
