

St. Lawrence High School

A Jesuit Christian Minority Institution

<u>Term</u>: Pre – Test Work Sheet – 15

Class – X Subject – Physical Science

Date - 09.06.20

Chapter - Current Electricity

Topic – Coulomb's Law

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. The total amount of charge in the universe
 - a. Increases with time
 - b. Decreases with time
 - c. Remains same
 - d. May increase or decrease depending on the situation
- 2. The SI unit of electric charge is
 - a. Coulomb
 - b. Stat Coulomb
 - c. Ampere
 - d. None of these.
- 3. According to the concept of quantization of electric charge, the smallest amount of charge possible is equal to the charge of
 - a. An electron
 - b. A proton
 - c. A neutron
 - d. Both a. and b.
- 4. Which one of the following can be the charge stored in a body?
 - a. $1.6 \times 10^{-20} C$
 - b. $4 \times 10^{-19} C$
 - c. $8.5 \times 10^{-19} C$
 - d. $9.6 \times 10^{-19} C$
- 5. The magnitude of force of attraction or repulsion between two charges, depends on
 - a. The product of two charges
 - b. The distance between two charges
 - c. The medium within which the charges are placed
 - d. All of them
- 6. The force of attraction or repulsion between two charges, is
 - a. Directly proportional to the distance between them
 - b. Inversely proportional to the distance between them
 - c. Directly proportional to the square of the distance between them
 - d. Inversely proportional to the square of the distance between them

- 7. If the distance between two charges is doubled, then the force will be
 - a. Doubled
 - b. Halved
 - c. 4times
 - d. $\frac{1}{4}$ th
- 8. If the amount of one charge (among two) is doubled, then the force between two charges will
 - a. Be doubled
 - b. Be halved
 - c. Four times
 - d. Remain same
- 9. If the amount of the charges and distance between them all are doubled, then the force between two charges
 - a. Will be 4 times
 - b. Will be doubled
 - c. Will remains same
 - d. will be $\frac{1}{16}$ th times
- 10. The SI unit of \in_0 is
 - a. Nm^2/C^2
 - b. $N/m^2 C^2$
 - c. $C^2/N m^2$
 - d. $N m^2 C^2$
- 11. The value of $\frac{1}{4\pi\epsilon_0}$ is
 - a. $9 \times 10^{-9} N m^2/C^2$
 - b. $9 \times 10^9 N m^2/C^2$
 - c. $1.6 \times 10^{-9} N m^2/C^2$
 - d. $1.6 \times 10^9 N m^2/C^2$
- 12. The value of \in_0 is
 - a. $36\pi \times 10^9 \ C^2/N m^2$
 - b. $\frac{10^{-9}}{36\pi} C^2/N m^2$
 - c. $36\pi \times 10^{-9} C^2/N m^2$
 - d. $\frac{10^9}{36\pi} C^2/N m^2$
- 13. The work done needed to bring one unit positive charge from infinity to a point near another charge, is known as
 - a. Electrostatic potential energy
 - b. Electrostatic potential
 - c. Electric field intensity
 - d. None of these
- 14. The SI unit of electrostatic potential is –

- a. Stat Volt
- b. Volt
- c. Coulomb
- d. Joule
- 15. The work done to displace one electron through a potential difference of 1volt is
 - a. $\frac{10^{-19}}{1.6}$ *Joule*
 - b. $\frac{10^{19}}{1.6}$ *Joule*
 - c. 1.6×10^{-19} Joule
 - d. 1.6×10^{19} Joule

Name of the teacher – Soumitra Maity