St. Lawrence High School
A Jesuit Christian Minority Institution
Term : Pre - Test
Work Sheet - 15
Class - X
Subject - Physical Science
Date - 09.06.20

Chapter - Current Electricity

Choose the correct option for the following questions.
$1 \times 15=15$

1. The total amount of charge in the universe -
a. Increases with time
b. Decreases with time
c. Remains same
d. May increase or decrease depending on the situation
2. The SI unit of electric charge is -
a. Coulomb
b. Stat Coulomb
c. Ampere
d. None of these.
3. According to the concept of quantization of electric charge, the smallest amount of charge possible is equal to the charge of -
a. An electron
b. A proton
c. A neutron
d. Both a. and b.
4. Which one of the following can be the charge stored in a body ?
a. $1.6 \times 10^{-20} \mathrm{C}$
b. $4 \times 10^{-19} \mathrm{C}$
c. $8.5 \times 10^{-19} \mathrm{C}$
d. $9.6 \times 10^{-19} \mathrm{C}$
5. The magnitude of force of attraction or repulsion between two charges, depends on -
a. The product of two charges
b. The distance between two charges
c. The medium within which the charges are placed
d. All of them
6. The force of attraction or repulsion between two charges, is -
a. Directly proportional to the distance between them
b. Inversely proportional to the distance between them
c. Directly proportional to the square of the distance between them
d. Inversely proportional to the square of the distance between them
7. If the distance between two charges is doubled, then the force will be -
a. Doubled
b. Halved
c. 4times
d. $\frac{1}{4}$ th
8. If the amount of one charge (among two) is doubled, then the force between two charges will -
a. Be doubled
b. Be halved
c. Four times
d. Remain same
9. If the amount of the charges and distance between them all are doubled, then the force between two charges -
a. Will be 4 times
b. Will be doubled
c. Will remains same
d. will be $\frac{1}{16}$ th times
10. The SI unit of ϵ_{0} is
a. $N m^{2} / C^{2}$
b. $N / m^{2}-C^{2}$
c. $\quad C^{2} / N-m^{2}$
d. $N-m^{2}-C^{2}$
11. The value of $\frac{1}{4 \pi \epsilon_{0}}$ is
a. $\quad 9 \times 10^{-9} N-m^{2} / C^{2}$
b. $9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / C^{2}$
c. $1.6 \times 10^{-9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}$
d. $1.6 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}$
12. The value of ϵ_{0} is
a. $\quad 36 \pi \times 10^{9} C^{2} / N-m^{2}$
b. $\frac{10^{-9}}{36 \pi} C^{2} / N-m^{2}$
c. $36 \pi \times 10^{-9} C^{2} / N-m^{2}$
d. $\frac{10^{9}}{36 \pi} C^{2} / N-m^{2}$
13. The work done needed to bring one unit positive charge from infinity to a point near another charge, is known as
a. Electrostatic potential energy
b. Electrostatic potential
c. Electric field intensity
d. None of these
14. The SI unit of electrostatic potential is -
a. Stat Volt
b. Volt
c. Coulomb
d. Joule
15. The work done to displace one electron through a potential difference of 1volt is -
a. $\frac{10^{-19}}{1.6}$ Joule
b. $\frac{10^{19}}{1.6}$ Joule
c. 1.6×10^{-19} Joule
d. 1.6×10^{19} Joule
