

St. Lawrence High School A Jesuit Christian Minority Institution <u>Term : 1st</u> Solution of Work Sheet – 14 Subject – Physics

Chapter - Laws of motion

Date - 30.06.20

Topic – Newton's laws and static system

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. When a constant force is applied on a body, it moves with uniform
 - a. Acceleration
 - b. Velocity
 - c. Speed
 - d. Momentum

Ans: a. acceleration

- 2. A body of mass 40g is moving with constant velocity 2cm/s on a horizontal frictionless table. The force on the body is
 - a. Zero
 - b. 39200dyne
 - c. 160dyne
 - d. 80dyne
 - Ans: a. zero
- 3. A body of mass 2kg is moving on a horizontal surface with initial velocity of 4m/s comes to rest after 2s. if one wants to keep this body moving on the same surface with a velocity of 4m/s, the force required is
 - a. 8N
 - b. 4N
 - c. Zero
 - d. 2N

<mark>Ans: b. 4N</mark>

- 4. Two bodies of mass 4kg and 5kg are acted upon by the same force. If the acceleration of the lighter body is $2m/s^2$, then the acceleration of the heavier body is
 - a. $4.2m/s^2$
 - b. $3.6m/s^2$
 - c. $2.4m/s^2$
 - d. 1.6m/s²

Ans: d. 1.6m/s²

- 5. An object with mass 10kg moves at a constant velocity of 10m/s. A constant force then acts for 4s on it giving it a speed of 2m/s in the opposite direction. the acceleration produced is
 - a. $3m/s^2$
 - b. -3 m/s^2
 - c. 0.3 m/s^2
 - d. -0.3 m/s^2

Ans: b. – 3 m/s²

- 6. The velocity acquired by a mass m in travelling a certain distance d starting from rest under the action of a constant fore is directly proportional to
 - a. \sqrt{m}
 - b. $\frac{1}{\sqrt{m}}$
 - c. m
 - d. None of these.
 - Ans: b. $\frac{1}{\sqrt{m}}$
- 7. A ship of mass 3×10^7 kg initially at rest is pulled by a force of 5×10^4 N through a distance of 3m. Neglecting friction, the speed of the ship at this moment is
 - a. 3m/s
 - b. 1.5m/s
 - c. 0.1m/s
 - d. 2m/s

Ans: c. 0.1m/s

- 8. In Newton's second law $\vec{F} = m\vec{a}$ (for constant mass) \vec{a} is the acceleration of the mass with respect to
 - a. Any observer
 - b. Any inertial observer
 - c. Any observer at rest only
 - d. Any observer moving with constant acceleration Ans: b. Any inertial observer
- 9. A balloon of mass M is descending with a constant acceleration g/3. When a mass m is released from the balloon, it starts rising with same acceleration. The value of m is
 - a. $\frac{M}{2}$
 - b. M/4
 - c. 4M
 - d. 2M
 - Ans: a. M/2
- 10. A ball weighing 10g hits a hard surface vertically with speed of 5m/s and rebounds with same speed. The ball remains in contact with the surface for 0.01sec. the average force exerted by the surface on the ball is
 - a. 100N
 - b. 10N
 - c. 1N
 - d. 0.1N

Ans: b. 10N

- 11. Newton's 2nd law of motion connects
 - a. Momentum and acceleration
 - b. Change of momentum and velocity
 - c. Rate of change of momentum and external force
 - d. Rate of change of force and momentum
 - Ans: c. Rate of change of momentum and external force
- 12. A water jet, whose cross sectional area is *a* strikes a wall making an angle θ with the normal and rebounds elastically. The velocity of water of density d is v. force exerted on the wall is
 - a. $2av^2d\cos\theta$
 - b. $2av^2d\sin\theta$
 - c. $2avd \cos\theta$
 - d. $avd cos\theta$

<mark>Ans: a. 2αν²d cosθ</mark>

- 13. A player catches a 200g ball moving with a speed of 20m/s. If the time taken to complete the catch is 0.5 sec, the force exerted on the player's hand is
 - a. 8N
 - b. 4N
 - c. 2N
 - d. 0N

<mark>Ans: a. 8N</mark>

- 14. A tennis ball is dropped on the floor from a height of 20m. It rebounds to a height of 5m. The ball was in contact with the floor for 0.01 sec. what was its average acceleration during the contact? ($g = 10m/s^2$)
 - a. 3000 m/s²
 - b. 2000 m/s²
 - c. 1000 m/s²
 - d. 500 m/s^2

<mark>Ans: a. 3000 m/s²</mark>

- 15. A 150g tennis ball coming at a speed of 40 m/s is hit straight back by a bat to speed of 60m/s. The magnitude of the average force F on the ball, when it is in contact for 5ms with the bat is
 - a. 2500N
 - b. 3000N
 - c. 3500N
 - d. 4000N

Ans: b. 3000N

Name of the teacher - Soumitra Maity