

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL-3

SUBJECT – MATHEMATICS

1st term

Chapter: Trigonometry

Class: XI

Topic: Multiple angles

Date: 19.06.2020

Trigonometric ratios of multiple angles : -

Identities involving $\sin 2A$, $\cos 2A$, $\tan 2A$, $\sin 3A$ etc., are called multiple angle identities.

- (i) $\sin 2A = \sin(A+A) = \sin A \cos A + \cos A \sin A = 2 \sin A \cos A$.
- (ii) $\cos 2A = \cos(A+A) = \cos A \cos A \sin A \sin A = \cos^2 A \sin^2 A$
- (iii) $\sin 3A = \sin(2A+A)$
 - = sin 2A cos A + cos 2A sin A
 - $= (2\sin A\cos A)\cos A + (1-2\sin^2 A)\sin A$
 - $= 2\sin A\cos^2 A + \sin A 2\sin^3 A$
 - $= 2\sin A(1 \sin^2 A) + \sin A 2\sin^3 A$
 - $= 3\sin A 4\sin^3 A$

Thus we have the following multiple angles formulae

1. (i)
$$\sin 2A = 2\sin A \cos A$$

(ii)
$$\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$$

2. (i)
$$\cos 2A = \cos^2 A - \sin^2 A$$
 3.

(ii) $\cos 2A = 2\cos^2 A - 1$ 4. $\sin 3A = 3\sin A - 4\sin^3 A$

(iii)
$$\cos 2A = 1 - 2 \sin^2 A$$
 5. $\cos 3A = 4 \cos^3 A - 3 \cos A$

(iv)
$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$
 6. $\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$

Llass

 $\tan 2A = \frac{2\tan A}{1-\tan^2 A}$

Solved examples :-

Example 1

Show that
$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$

Solution

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{2\sin\theta\cos\theta}{2\cos^2\theta} = \frac{\sin\theta}{\cos\theta} = \tan\theta$$

Example 2

If
$$\tan A = \frac{1}{7}$$
 and $\tan B = \frac{1}{3}$, show that $\cos 2A = \sin 4B$

Solution

$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A} = \frac{1 - \frac{1}{49}}{1 + \frac{1}{49}} = \frac{48}{49} \times \frac{49}{50} = \frac{24}{25} \dots (1)$$

Now $\sin 4B = 2\sin 2B \cos 2B$

$$= 2\frac{2\tan B}{1+\tan^2 B} \times \frac{1-\tan^2 B}{1+\tan^2 B} = \frac{24}{25} \qquad \dots (2)$$

From(1) and (2) we get,

$$\cos 2A = \sin 4B$$
.

Example 3

If $\tan \alpha = \frac{1}{3}$ and $\tan \beta = \frac{1}{7}$ then prove that $(2\alpha + \beta) = \frac{\pi}{4}$.

Solution

$$\tan(2\alpha + \beta) = \frac{\tan 2\alpha + \tan \beta}{1 - \tan 2\alpha \cdot \tan \beta}$$
$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{2 \times \frac{1}{3}}{1 - \frac{1}{9}} = \frac{3}{4}$$
$$\tan(2\alpha + \beta) = \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \times \frac{1}{7}} = \frac{\frac{25}{28}}{\frac{25}{28}}$$
$$= 1 = \tan \frac{\pi}{4}$$
$$2\alpha + \beta = \frac{\pi}{4}$$

Example 4
If
$$\tan A = \frac{1 - \cos B}{\sin B}$$
 then prove that $\tan 2A = \tan B$

Solution

Consider
$$\frac{1 - \cos B}{\sin B} = \frac{2 \sin^2 \frac{B}{2}}{2 \sin \frac{B}{2} \cos \frac{B}{2}} = \frac{\sin \frac{B}{2}}{\cos \frac{B}{2}} = \tan \frac{B}{2}$$

tanA = $\frac{1 - \cos B}{\sin B}$
= $\tan \frac{B}{2}$
A = $\frac{B}{2}$
2A = B
∴ tan2A = tanB

Homework :-

- Find the values of the following : (i) cosec15° (ii) sin(-105°) (iii) cot75° 1.
- Find the values of the following 2.
 - (i) $\sin 76^{\circ} \cos 16^{\circ} \cos 76^{\circ} \sin 16^{\circ}$ (ii) $\sin \frac{\pi}{4} \cos \frac{\pi}{12} + \cos \frac{\pi}{4} \sin \frac{\pi}{12}$

(iii) $\cos 70^{\circ} \cos 10^{\circ} - \sin 70^{\circ} \sin 10^{\circ}$ (iv) $\cos^2 15^{\circ} - \sin^2 15^{\circ}$

If $\sin A = \frac{3}{5}, 0 < A < \frac{\pi}{2}$ and $\cos B = \frac{-12}{13}, \pi < A < \frac{3\pi}{2}$ find the values of the 3. following :

(i) $\cos(A+B)$ (ii) sin(A-B)(iii) tan(A-B)

If $\cos A = \frac{13}{4}$ and $\cos B = \frac{1}{7}$ where *A*, *B* are acute angles prove that $A-B = \frac{\pi}{3}$ 4.

5. Prove that 2tan80° = tan85° -tan 5°

- 6. If $\cot \alpha = \frac{1}{2}$, $\sec \beta = \frac{-5}{3}$, where $\pi < \alpha < \frac{3\pi}{2}$ and $\frac{\pi}{2} < \beta < \pi$, find the value of $\tan(\alpha + \beta)$. State the quadrant in which $\alpha + \beta$ terminates.
- 7. If $A+B = 45^{\circ}$, prove that $(1+\tan A)(1+\tan B) = 2$ and hence deduce the value of $\tan 22\frac{1^{\circ}}{2}$
- 8. Prove that (i) $\sin(A + 60^{\circ}) + \sin(A 60^{\circ}) = \sin A$

(ii) $\tan 4A \tan 3A \tan A + \tan 3A + \tan A - \tan 4A = 0$

- 9. (i) If $\tan \theta = 3$ find $\tan 3\theta$
 - (ii) If $\sin A = \frac{12}{13}$, find $\sin 3A$
- 10. If $\sin A = \frac{3}{5}$, find the values of $\cos 3A$ and $\tan 3A$

11. Prove that
$$\frac{\sin(B-C)}{\cos B \cos C} + \frac{\sin(C-A)}{\cos C \cos A} + \frac{\sin(A-B)}{\cos A \cos B} = 0.$$

12. If $\tan A - \tan B = x$ and $\cot B - \cot A = y$ prove that $\cot(A - B) = \frac{1}{x} + \frac{1}{y}$.

Prepared by -

Mr. SUKUMAR MANDAL (SkM)