

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-30 SUBJECT - MATHEMATICS Final - Term

Chapter: Miscellaneous Class: XII

Topic: Miscellaneous Date: 21.01.2021

Choose the correct option

(1 x 15=15)

- $1. \qquad \int_0^\pi \sin 3x \sin 5x \, dx = ?$

- a) $\frac{\pi}{4}$ b) 0 c) 1 d) None of these

$$2. \quad \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx = ?$$

- a) $\frac{\pi}{2}$, b) $\frac{\pi}{4}$, c) $\frac{\pi}{8}$, d) None of these.

3.
$$\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} dx = ?$$

- a) $\frac{3}{8}$, b) $\frac{1}{8}$, c) $\frac{1}{2}$, d) None of these.

- 4. $\frac{d^3y}{dx^3} + y = \sqrt[3]{1 + \frac{dy}{dx}}$ is a differential equation of degree
 - **a**. 1
 - b. 2
 - c. 3
 - d. 4
- 5. The degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^4 + \frac{dy}{dx} + y = 6x^3 \text{ is } -$$

- a. 4
- b. 3
- c. 2
- d. 1
- 6. In the linear differential equation of the form $\frac{dx}{dy} + Px = Q$, Q is
 - a. A constant.
 - b. Function of x.
 - c. A constant or a function of y.
 - d. Function of both x & y.
- 7. The integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$,
 - is
 - a. *e*^{*x*}
 - b. e^{Px}
 - c. $e^{\int Pdx}$
 - d. $e^{\int Pdy}$
- 8. Which of the statement(s) is/are true?
 - i. $f(x) = x^3$ is decreasing in $(-\infty, \infty)$
 - ii. $f(x) = x^4$ is increasing in $(-\infty, 0)$
 - a) Only i. is true.
 - b) Only ii. is true.
 - c) Both i. and ii. are true.
 - d) Both are false.

- If the slopes of the tangent and normal to the curve y = f(x) at (x, y) be $\frac{dy}{dx}$ and m respectively, then
 - m = ?
 - a) $-\frac{dy}{dx}$
 - b) $\frac{dx}{dy}$
 - c) $-\frac{dx}{dy}$
 - d) None of these.
- 10. If the tangent to the continuous curve y =f(x) at P(a,b) is parallel to x-axis, then the equation of the tangent at P is
 - a) y = b
 - b) y = a
 - c) y = -b
 - d) y = -a
- 11. The slope of the tangent to the rectangular hyperbola $xy = c^2$ at $(ct, \frac{c}{t})$ is –
- 12. The minimum value of the function $f(x) = x^2 x + 2$ is ?

- ; b) 1 ; c) 7 ; d) None of these.

13. The area bounded by the straight lines 2x = 3y, x = 3, x = 5 and

x-axis (in square unit) is -

- a) 16
- b) 8
- c) 4
- d) $\frac{16}{3}$
- 14. In an LPP, the decision variables can take?
 - a) Any real values
 - b) Any integer values
 - c) Any natural numbers
 - d) Any non-negative real values
- 15. An infeasible LPP has?
 - a) A unique solution
 - b) No solution
 - c) Many solutions
 - d) None of these.

Prepared by:-

Mr. Sukumar Mandal (SkM)