ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

ग ८ २ मानते २ रेगाप ज २ २

SOLUTION-31(CLASS-12) <u>TOPIC</u>- ELECTROCHEMISTRY <u>SUBTOPIC</u>- ELECTROCHEMICAL CELL SUBJECT – CHEMISTRY DURATION – 30 mins

F.M. - 15 DATE -27.06.20

- $1.1 E_1$, E_2 and E_3 are the e.m.f. values of the three galvanic cells respectively-
- (a) $Zn | Zn_{1M}^{+2} | | Cu_{0,1M}^{+2} | Cu$
- (b) ^{Zn | Zn ⁺² ||Cu⁺² | Cu}
- (c) $Zn |Zn_{0.1M}^{+2}||Cu_{1M}^{+2}|Cu$

Which one of the following is true?

(a) $E_2 > E_3 > E_1(b) E_3 > E_2 > E_1(c) E_1 > E_2 > E_3(d) E_1 > E_3 > E_2$ Ans. b

1.2 The standard e.m.f. of galvanic cell involving 3 moles of electrons in its redox reaction is 0.59 V. The equilibrium constant for the reaction of the cell is-

```
(a)10^{25}(b) 10^{20}(c) 10^{15}(d) 10^{30}
```

Ans. d

1.3 The potential of a hydrogen electrode at pH = 10 is-

(a) 0.59 V(b) 0.00 V(c) -0.59 V(d) -0.059 V

Ans. c

1.4 For the reduction of silver ions with copper metal the standard cell potential was found to be +0.46V at 25°C. The value of standard Gibbs energy, ΔG° will be (F = 96500 C mol⁻¹)-

(a) -44.5 kJ (b) -98.0 kJ (c) -89.0 kJ (d) -89.0 J

Ans. c

1.5 Which of the following statement is correct?

(a) E_{Cell} and $\Delta_r G$ of cell reaction both are extensive properties.

(b) E_{Cell} and $\Delta_r G$ of cell reaction both are intensive properties.

(c) E_{Cell} is an intensive property while $\Delta_r G$ of cell reaction is an extensive property. (d) E_{Cell} is an extensive property while $\Delta_r G$ of cell reaction is an intensive property. **Ans. c**

1.6 $E_{\rm Cell}^{\ominus}$ = 1.1V for Daniel cell. Which of the following expressions are correct description of state of equilibrium in this cell?

(a)
$$1.1 = K_c$$

(b) $\frac{2.303 \text{RT}}{2\text{F}} \log K_c = 1.1$
(c) $\log K_c = \frac{2.2}{0.059}$

(*d*) $\log K_c = 1.1$

Ans. b and c

1. The Gibbs energy for the decomposition of Al_2O_3 at 500°C is as follows:

²/₃ Al₂O₃ ⁴/₃ Al +**∍**O2, Δ_rG = +966 kJ mol⁻¹

The potential difference needed for electrolytic reduction of Al₂O₃ at 500°C is at least:

a) 2.5 V b) 5.0 V c) 4.5 V d) 3.0 V

Ans. a

1.8 The highest electrical conductivity of the following aqueous solutions is of-

(a) 0.1 M acetic acid (b) 0.1 M chloroacetic acid (c) 0.1 M fluoroacetic acid(d) 0.1 M difluoroacetic acid

Ans. d

1.9 Saturated solution of KNO₃ is used to make 'salt bridge' because –

(a) Velocity of K+ is greater than that of NO_3^- (b) velocity of NO_3^- is greater than that of K⁺ (c) velocity of both K+ and NO_3^- are nearly the same (d) KNO₃ is highly soluble in water

Ans. c

1.10 For the electrochemical cell:

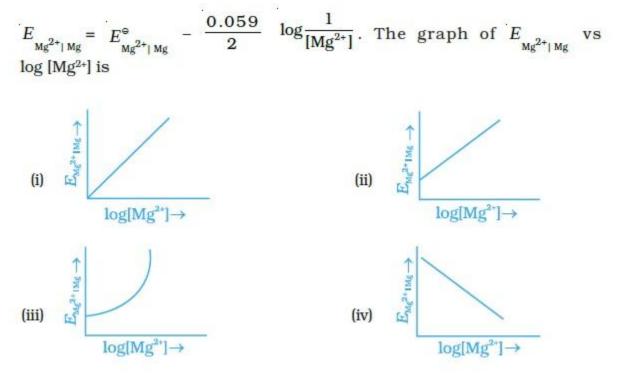
M | M+ | | X- | X, E° [M+ | M] = 0.44 V and

E° [X | X-] = 0.33 V.

From the data one can deduce that-

(a) M + X- \mathbb{H} + + X- is the spontaneous reaction (b) M+ + X \rightarrow M + X is the spontaneous reaction (c) Ecell = 0.77 V (d) Ecell = -0.77 V

[Given F = 96500 (mol⁻¹); R = 8.314 JK⁻¹ mol⁻¹]


Ans. b

1.11An electrochemical cell can behave like an electrolytic cell when – (a) $E_{cell} = 0$ (b) $E_{cell} > Eext(c) E_{ext} > E_{cell}(d) E_{cell} = E_{ext}$ Ans. c

1.12Which cell will measure standard electrode potential of copper electrode?

(a) Pt (s) | H₂ (g,0.1 bar) | H⁺ (aq.,1 M) || Cu²⁺(aq.,1M) | Cu (b) Pt(s) | H₂ (g, 1 bar) | H⁺ (aq.,1 M) || Cu²⁺ (aq.,2 M) | Cu (c) Pt(s) | H₂ (g, 1 bar) | H⁺ (aq.,1 M) || Cu²⁺ (aq.,1 M) | Cu (d) Pt(s) | H₂ (g, 1 bar) | H⁺ (aq.,0.1 M) || Cu²⁺ (aq.,1 M) | Cu Ans. c

1.13

1.14Using the data given below find out the strongest reducing agent.

 $E^{\Theta}_{Cr_{2}O_{7}^{2-}/Cr^{3+}} = 1.33V \qquad E^{\Theta}_{Cl_{2}/Cl^{-}} = 1.36V$ $E^{\Theta}_{MnO_{4}^{-}/Mn^{2+}} = 1.51V \qquad E^{\Theta}_{Cr^{3+}/Cr} = -0.74V$ a) Cl⁻b) Crc) Cr³⁺d)Mn²⁺ Ans. b

1.15 The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called-

a) Cell potential b) Cell e.m.f c) Potential difference d) Cell voltage **Ans. b**

PREPARED BY: MR. ARNAB PAUL CHOWDHURY