

ST. LAWRENCE HIGH SCHOOL

A Jesuit Christian Minority Institution

WORKSHEET - 16 (ANSWER KEY)

<u>Topic – Spooling, Buffering and Virtual Memory</u>

Subject: CO	Subject: COMPUTER SCIENCE Class - 11				F.M:15	
Chapter: Software and Languages					Date: 20/07/2020	
<u>Choose</u>	the co	rect answer fo	or each ques	stion:	[15 X 1 = 15]	
1.	Full for	m of SPOOL:				
		Simultaneous Par	rts Operation O	n-line		
		Simultaneous Pe	•			
		Simultaneous Per				
		Simultaneous Per				
2.		uses limited a	•			
		Spooling		,		
	b.	Buffering				
	c.	Both (a) and (b)				
	d.	None of these				
3.		considers d	lisk as a huge sp	oool or buffer.		
	a.	Spooling				
	b.	Buffering				
	c.	Both (a) and (b)				
	d.	None of these				
4.	Spoolir	Spooling is efficient than buffering.				
	a.	<u>More</u>				
	b.	Less				
	c.	Same				
	d.	Cannot be detern	nined			
5.	Spooling requires resource management as compar			are to buffering as different		
	resour	ces manages the p	rocess for speci	ific jobs.		
	a.	More				
	b.	<u>Less</u>				
	c.	Same				
	d.	Cannot be detern	nined			
6.	Swap space exists in					
	a) prim	a) primary memory				
	b) <u>seco</u>	b) secondary memory				
	c) cpu	• •				
	d) none of the mentioned					
7.	Separation of user logical memory and physical memory is					
	a) Memory control					
	b) Memory management					
	c) Memory sharing					
	d) Virt	ual memory				

٥.		can nangle the input/output of one job along with the computation of				
	anothe	r job at the same time.				
	a.	Spooling				
		Buffering				
		Both (a) and (b)				
		None of these				
9.		e of virtual memory, the memory can be shared among				
		a) <u>processes</u>				
	b) thre					
	c) instr					
	d) none	e of the mentioned				
10.		overlaps the input and output of one job with the computation of the same job.				
	a.	Spooling				
	b.	Buffering				
	c.	Both (a) and (b)				
	d.	None of these				
11.	With th	ne help ofInput/output subsystems can improve the performance and				
	efficier	ncy of the computer by using a memory space in the main memory.				
	a.	Spooling				
	b.	Buffering				
		Both (a) and (b)				
		None of these				
12.		is a storage allocation scheme in which secondary memory can be addressed				
		igh it were part of main memory.				
		<u>Virtual Memory</u>				
		Temporary RAM				
		Permanent				
		None of these				
13.		Memory is a technique that is implemented using:				
		Software				
		Hardware				
		Both (A) and (B)				
4.4	-	None of these				
14.		maps memory addresses used by a program, called virtual addresses.				
		Virtual Memory				
		Temporary RAM				
		Permanent Name of these				
1 [None of these				
15.		outs data into a working area so it can be accessed and processed by				
		r program or resource.				
		<u>Temporary</u> Permanent				
		Virtual				
		None of those				
	u.					

Phalguni Pramanik