ST. LAWRENCE HIGH SCHOOL

TOPIC-POLYNOMIAL

Sub: Mathematics
STUDY MATERIAL -4

Class-9
Date: 7.5.2020

DEFINITION :

1.Algebraic expression in which the index of the variable is whole number is called a polynomial.

For example : $2 x+3$ is a linear polynomial because the index of x is 1 (whole number). $2 x^{1 / 2}-2$ is not a polynomial because the index of x is $1 / 2$ (fraction).
2.In a polynomial, the index of the highest power is called the degree of the polynomial.

For example : $x^{2}+x+1$ is a polynomial whose degree $=2$.
3. One power polynomial is called linear polynomial.

For example: $a x+b, 3 x+2$ etc.
4. The polynomial in which only one term is present is called a monomial.

For example : $3 x, 7 y, 2 x$ etc.
5. The polynomial in which two terms are present is called a binomial.

For example : $x+5, x^{2}+3 x$, etc.
6. The polynomial in which three terms are present is called a trinomial.

For example: $x^{2}+2 x+4$ etc.

Notation:
Polynomials are denoted by $f(x) ; f(y) ; g(x) ; p(x)$ etc. according to the variable.

7. REMAINDER THEOREM.

If a polynomial $f(x)$ is divided by $(x-a)$ to give $q(x)$ as quotient and R as remainder then, $f(x)=(x-a) \cdot q(x)+R$.
Since it is an identity therefore putting $x=a$ on both sides we get,

$$
\begin{aligned}
f(a) & =(a-a) \cdot q(x)+R \\
& =0+R \\
& =R
\end{aligned}
$$

Therefore remainder $=R=f(a)$.
This means that if a polynomial $f(x)$ is divided by $(x-a)$, then the remainder will be $f(a)$.

Therefore $\mathrm{f}(\mathrm{a})=0$.

9. FACTOR THEOREM :

If $f(x)$ is a polynomial and $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.
Conversely, if $(x-a)$ is a factor of $f(x)$ then $f(a)=0$.
Again, if $(x+a)$ is a factor of $f(x)$ then $f(-a)=0$.
10. If at $x=a$, the polynomial $f(x)$ becomes equal to zero, then $x=a$ is called the zero of the polynomial $f(x)$.
That means, a will be called the zero of the polynomial $f(x)$ if $f(a)=0$.

For example : Let $f(x)=x \quad 2$.
Therefore $f(2)=2 \quad 2=0$.
Hence, 2 is the zero of the polynomial $f(x)$.
11. $f(x)=0$ is called the equation of the polynomial $f(x)$.
12. If $f(a)=0$ then $x=0$ is the zero of the polynomial $f(x)$.

For example : let $f(x)=x-2$
Since $f(2)=2-2=0$, therefore 2 is the zero of the polynomial $f(x)$.
13. $x=a$ is called the root of the polynomial equation $f(x)=0$.

For example : let $f(x)=2 x+4$
Since $f(-2)=0$, therefore -2 is a root of the equation $f(x)=0$.

SOLVED SUMS:

1. Which of the following are the polynomials?
i) $x^{2}+2 x$
ii) $x+1 / x-3$
iii) 4

Ans: i) It is a polynomial.
ii) It is not a polynomial.
iii)It is a polynomial.
2. If $f(x)=2 x+3$ then find the value of $f(x)+f(-x)$.

Ans: $f(x)=2 x+3$
Therefore, $\mathrm{f}(-\mathrm{x})=2(-\mathrm{x})+3$

$$
=-2 x+3
$$

Hence, $f(x)+f(-x)=2 x+3-2 x+3$

$$
=6
$$

3. What will be the remainder if the polynomial $x^{4}+4 x^{3}+6 x^{2}+4 x+4$ is divided by $(x+2)$?

Ans: $f(x)=x^{4}+4 x^{3}+6 x^{2}+4 x+4$
Therefore,$f(-2)=(-2)^{4}+4(-2)^{3}+6(-2)^{2}+4(-2)+4$

$$
=16-32+24-8+4=4
$$

4. If the polynomial $x^{4}+2 x^{3}-3 x^{2}+a x \quad b$ is divided by $(x-1)$ and $(x+1)$, the remainders are 5 and -13 . Find the values of a and b.

Ans : let $f(x)=x^{4}+2 x^{3}-3 x^{2}+a x-b$.

If $f(x)$ is divided by $(x-1)$ and ($x+1$), the remainders will be $f(1)$ and $f(-1)$ respectively.
Now $f(1)=1^{4}+2.1^{3}-3.1^{2}+a .1-b$

$$
=1+2-3+a-b=a-b
$$

B.T.P. $f(1)=5$ or $a-b=5-----(i)$

Again, $f(-1)=(-1)^{4} 2 \cdot(-1)^{3}-3 \cdot(-1)^{2} a(-1)-b$

$$
\begin{equation*}
=1-2-3 \quad a \quad b=-4-a-b \tag{ii}
\end{equation*}
$$

B.T.P. $f(-1)=-13$ or $-4-a-b=-13$ or $a+b=9$

By solving equation (i) and (ii) we get, $a=7$ and $b=2$.
5. For what values of k the polynomial $k+4 x-3 x^{2} \quad x^{3}$ will be completely divisible by $(x+3)$?

$$
\text { Ans: Let } f(x)=k+4 x-3 x^{2} \quad x^{3} .
$$

Since $f(x)$ is divisible by $(x+3)$ therefore $f(-3)=0$.

Now, $f(-3)=k+4(-3)-3(-3)^{2} \quad(-3)^{3}$
$=k-12-27+27$
$=\mathrm{k}-12$
B.T.P. $\mathrm{k}-12=0$ or $\mathrm{k}=12$.
6. What will be the remainder if $x^{3}+4 x^{2}+4 x-3$ is divided by x ?

Ans: Let $f(x)=x^{3}+4 x^{2}+4 x-3$

When $f(x)$ is divided by $x-0$ then the remainder will be $f(0)$.

Therefore the required remainder is

$$
\begin{aligned}
=f(0) & =(0)^{3}+4(0)^{2}+4(0)-3 \\
& =-3 .
\end{aligned}
$$

