

Q1.

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-11

SUBJECT - STATISTICS

Term: 1st

Topic - BINOMIAL DISTRIBUTION	Class: XII
-------------------------------	------------

Full Mark

Marks: 15				Date:11.06.2020		
	Select	the correct alto	ernative of the following	ng questions.		
	(i)		on in Binomial distrib b) n(1-p)	3	d) none of these	
	(ii)	The variance b) 1.20	in Binomial distribution b) 10.25	on $(5, \frac{1}{2})$ is c) 2.25	d) none of these	
	(iii)	For a binomia a) 0	al distribution if mean b) 1	is equal to its variance c) either 0 or 1	then p is equal to d) none of th	
	(iv)	The binomial a) p = 1	=	s symmetric if and only c) p< 1	y if d) none of these	
	(v)	The binomial a) $p = \frac{1}{2}$	distribution(n+3, p) i b) $p > \frac{1}{2}$	s positively skewed if a c) $p < \frac{1}{2}$	nd only if d) none of these	
	(vi)		distribution(n+3, p) i b) $p > \frac{1}{2}$	s negatively skewed if c) $p < \frac{1}{2}$	and only if d) none of these	

(vii)	The binomial	pinomial distribution(n+3, p) attains maximum variance at				
	a) $p = \frac{1}{2}$	b) $p > \frac{1}{2}$	c) p < $\frac{1}{2}$	d) none of these		
(viii)	The binomial	The binomial distribution(n, p) the minimum variance is				
	4	b) $p = \frac{n}{4}$	c) $p < \frac{1}{2}$	d) none of these		
(ix)	$X \sim Bin(8, 0.5)$ then first order factorial moment is equal to					
` /	a) 4	b) 6	c) 8	d) none of these		
(x)	$X \sim Bin(8, 0.1)$	$X \sim Bin(8, 0.5), P(X < 1)$ is equal to				
` '	a) $\frac{8}{512}$	5), $P(X \le 1)$ is equal to $\frac{9}{512}$	c) $\frac{9}{256}$	d) none of these		
(xi)	i) The binomial distribution attains maximum variance when it is					
	a) Positive si	kewed b) negative sk	ewed c) symmetric	d) none of these		
(xii)	The third order central moment of Bin (9, $\frac{1}{3}$) is					
	a) $\frac{2}{3}$	b) $\frac{1}{3}$	c) 0	d)) none of these		
(xiii)	The fifth order central moment of Bin $(n, \frac{1}{2})$ is					
	a) 0	b) n	c) $\frac{n}{2}$	d)) none of these		
(xiv)	the binomial distribution (n, p) is leptokurtic when					
	a) $p = \frac{1}{2}$	b) p > $\frac{1}{2}$	c) $p < \frac{1}{2}$	d) none of these		
(xiv)	A person tosse gets the first he	A person tosses an unbiased coin rtepeatedly. Find the probability that in 4 th throw gets the first head				
		b) $\frac{3}{16}$ c) $\frac{1}{4}$	d) none	e of these		

Prepared by

Sanjay Bhattacharya