## ST. LAWRENCE HIGH SCHOOL ## A JESUIT CHRISTIAN MINORITY INSTITUTION **WORK SHEET: 38 Subject: PHYSICS** Date: 16.11.2020 CLASS: XII Chapter- Refraction of light at plane surface. Topic: Refraction on parallel slab, T.I.R. ## **Multiple Choice Questions:** $1 \times 15 = 15$ - 1: In total internal reflection. - (a) light ray travelling through a denser medium is completely reflected back to denser medium - (b) light ray travelling through a denser medium is completely refracted to rare medium - (c) light ray is partially reflected back to denser medium and partially refracted to rare medium - (d) light ray is absorbed completely by denser medium - 2: Total internal reflection of a light ray travelling from denser medium to rare medium occurs only when angle of incidence is - (a) $45^{\circ}$ - (b) $90^{\circ}$ - (c) acute - (d) more than a certain value - A green light is incident from the water to the air-water interface at the critical angle ( $\theta$ ). Select the 3: correct statement. - (a) The entire spectrum of visible light will come out of the water at an angle of 90° to the normal - (b) The spectrum of visible light whose frequency is less than that of green light will come out of the air medium - (c) The spectrum of visible light whose frequency is more than that of green light will come out to the air medium - (d) The entire spectrum of visible light will come out of the water at various angles to the normal - Two transparent media A and B are separated by a plane boundary. The speed of light in medium A 4. is $2 \times 10^8$ ms<sup>-1</sup> and in medium B is $2.5 \times 10^8$ ms<sup>-1</sup>. The critical angle for which a ray of light going from A to B is totally internally reflected is - (a) $\sin^{-1}(1/2)$ - (b) $\sin^{-1}(2/5)$ (c) $\sin^{-1}(4/5)$ (d) $\sin^{-1}(3/4)$ Water - A ray of light is incident at the glass-water interface at an angle i, it emerges finally parallel to the 5. surface of water, then the value of $\mu_{\sigma}$ would be - (a) $(4/3) \sin i$ (b) $1/\sin i$ 6: - (c) 4/3 - (d) 1 - Glass A ray of light from a denser medium strikes a rarer medium at an angle of incidence i (see figure). The reflected and refracted rays make an angle of 90° with each other. The angle of reflection and refraction are r and r'. - (a) $\sin^{-1}(\tan r)$ (b) $\sin^{-1}(\cot i)$ (c) $\sin^{-1}(\tan r')$ (d) $\tan^{-1}(\sin i)$ $\mu_{\rm w} = \overline{4/2}$ - A parallel sides slab ABCD of refractive index 2 is sandwiched 7: between two slabs of refractive indices $\sqrt{2}$ and $\sqrt{3}$ as shown in the figure. The minimum value of angle $\theta$ such that the ray PQ suffers total internal reflection at both the surfaces AB and CD is - (a) $30^{\circ}$ - (b) 45° - (c) $60^{\circ}$ - (d) 75° - 8: A glass prism of refractive index 1.5 is immersed in water ( $\mu = 4/3$ ). A light beam incident normally on the face AB is totally reflected to reach the face BC, if - (a) $\sin \theta > 8/9$ - (b) $2/3 \sin \theta < 8/9$ - (c) $\sin \theta < 2/3$ - (d) None of these - 9: A light source is placed at a depth of d below the surface of water ( $\mu$ ). A wooden disc is placed on the surface so that light from the source is not visible from the surface. Find out the radius of the wooden disc. (a) $\frac{d}{(\mu^2-1)^{1/2}}$ (b) $\frac{2d}{(\mu^2-1)^{1/2}}$ (c) $\frac{d}{2(\mu^2-1)^{1/2}}$ (d) $2d(\mu^2-1)^{1/2}$ - If the critical angle for light going from medium A to B is $\theta$ . Then find the speed of light in 10: medium B, if speed of light is v in medium A. - (a) $v(1 \cos \theta)$ - (b) $\frac{v}{\cos \theta}$ (c) $\frac{v}{\sin \theta}$ - (d) $v(1 \sin \theta)$ - A light beam is travelling from region I to region IV (refer figure). The refractive index in regions 11:. - I, II, II and IV are $n_0$ , $\frac{n_0}{2}$ , $\frac{n_0}{6}$ and $\frac{n_0}{8}$ , respectively. The angle of incidence $\theta$ for which the beam - (a) $\sin^{-1}(3/4)$ (b) $\sin^{-1}(1/8)$ - (c) $\sin^{-1}(1/4)$ (d) $\sin^{-1}(1/8)$ | Region I | Region II | Region III | Region IV | |----------|-----------------|-----------------|----------------------| | $n_{0}$ | $\frac{n_0}{2}$ | $\frac{n_0}{6}$ | <u>n<sub>0</sub></u> | - Mirage in hot deserts occurs due to 12: - (a) reflection of light (b) refraction of light (c) total internal reflection of light - (d) scattering of light - 13: A diamond piece has more brilliance than a glass piece of same shape and size, because - (a) diamond has tetrahedral arrangement of carbon atoms - (b) diamond has more mass density than the glass - (c) diamond is more hard than glass (d) critical angle for diamond is less than that of glass - An optical fibre is 14: - (a) a fiber optically visible in light - (b) a fiber optically invisible in light - (c) a fiber through which light can travel (d) a fiber opaque to ordinary light - 15: In an optical fiber (shown), correct relation of refractive indices of core cladding is - (a) $n_1 = n_2$ (b) $n_1 > n_2$ - (c) $n_1 < n_2$ - (d) $n_1 + n_2 = 2$