

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION WORKSHEET-30(CLASS-12) TOPIC- ELECTROCHEMISTRY SUBTOPIC- ELECTROCHEMICAL CELL

SUBJECT – CHEMISTRY DURATION – 30 mins

F.M. - 15 DATE -26.06.20

1.1 Ag⁺(aq) + e⁻ → Ag(s) E[°] = + 0.80 V, Fe²⁺(aq)+ + 2e⁻ → Fe(s) E[°] = - 0.44 V What is emf of the cell? Fe(s) + 2Ag⁺(aq) → Fe²⁺(aq) + 2Ag(s) (a) 1.16 V (b) 1.24 V (c) 2.04 V (d) -1.16 V

1.2 A conductivity cell containing electrodes made up of-

(a) Gold (b) Silver (c) Platinised platinum (d) Copper

1.3 What is pH of the half-cell Pt|H2)|H⁺ if $E_{H^+H_2}^{\circ}$ =-0.0295 V (a) 1 (b) 2 (c) 0.5 (d) 3

 $\begin{array}{l} X(s) + 2Y^{*}(aq) \rightleftharpoons X^{2*}(aq) + 2Y(s); \\ \\ 1.4 \quad (E^{\circ}_{cell} = 0.059 \text{ V}) \end{array}$

What is the value of 'K' for above reaction? (a) 1×10^8 (b) 1×10^2 (c) 4×10^3 (d) 3×10^4

1.5 Which of the following statement is correct?

(a) E_{Cell} and $\Delta_r G$ of cell reaction both are extensive properties.

(b) E_{Cell} and $\Delta_r G$ of cell reaction both are intensive properties.

(c) E_{Cell} is an intensive property while $\Delta_r G$ of cell reaction is an extensive property.

(d) E_{Cell} is an extensive property while $\Delta_r G$ of cell reaction is an intensive property.

1.6 E_{Cell}^{\ominus} = 1.1V for Daniel cell. Which of the following expressions are correct description of state of equilibrium in this cell?

(a)
$$1.1 = K_c$$

- (b) $\frac{2.303 \text{RT}}{2\text{F}} \log \text{K}_c = 1.1$
- (c) $\log K_c = \frac{2.2}{0.059}$
- (*d*) $\log K_c = 1.1$

1.7 The cell reaction of the galvanic cell.

Cu(s) / Cu²⁺ (aq) // Hg²⁺ (aq) / Hg (l) is (a) Hg + Cu²⁺ \longrightarrow Hg²⁺ + Cu (b) Hg + Cu²⁺ \longrightarrow Cu⁺ + Hg⁺ (c) Cu + Hg \longrightarrow CuHg (d) Cu + Hg²⁺ \longrightarrow Cu²⁺ + Hg

1.8 The reaction, $3ClO^{-}(aq) \rightarrow ClO_{3}(aq) + 2Cl^{-}(aq)$ is an example of-

(a) Oxidation reaction

(b) Reduction reaction

(c) Disproportionation reaction

(d) Decomposition reaction

1.9 The emf of the cell:

Ni / Ni²⁺ (1.0 M) // Au³⁺ (1.0 M) / Au (E° = -0.25 V for Ni²⁺/Ni; E° = 1.5 V for Au³⁺/Au) is-(a) 1.25 V (b) -1.25 V (c) 1.75 V (d) 2.0 V

1.10 The standard emf of a galvanic cell involving cell reaction with n = 2 is formed to be 0.295 V at 25° C. The equilibrium constant of the reaction would be-

(a) 1.0×10^{10} (b) 2.0×10^{11} (c) 4.0×10^{12} (d) 1.0×10^{2} [Given F = 96500 (mol⁻¹); R = 8.314 JK⁻¹ mol⁻¹]

1.11If $E^{\circ}_{Fe}^{2+}/Fe = -0.441$ V and $E^{\circ}_{Fe}^{2+}/Fe^{2+} = 0.771$ V, the standard EMF of the reaction, Fe + 2Fe³⁺ → 3Fe²⁺ will be-(a) 1.212 V (b) 0.111 V (C) 0.330 V (d) 1.653 V

1.13 Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.

- (a) -0.591V
- (b) +0.591V
- (c) +0.251V
- (d) -0.251V

1.14 Zinc rod is dipped in 0.1M solution of ZnSO4. The salt is 95% dissociated at this dilution at 298K. Calculate the electrode potential. Given the standard electrode potential is -0.76V.

a) -0.852V

b) -9.584V

c) -0.790V

d) +0.790V

1.15 The direction of movement of the electrons with an electrochemical cell is-

a) From anode to cathode

b) From cathode to anode

c) In both directions

d) Can't be predicted

PREPARED BY: MR. ARNAB PAUL CHOWDHURY