

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

Worksheet-3

SUBJECT – MATHEMATICS

1st term

Chapter: Trigonometry

Topic: Sums & Products

Class: XI

Date: 22.06.2020

(1 X 15 = 15)

Choose the correct option

2 sin 25° cos 15° = ?
 (a) sin 40° + sin 10°
 (b) sin 40° - sin 10°
 (c) - sin 40° + sin 10°
 (d) NOT

2. Let $f(\theta) = \frac{\tan^3 \theta}{1 + \tan^2 \theta} - \frac{\cot^3 \theta}{1 + \cot^2 \theta}, 0 < \theta < \frac{\pi}{4}.$ Then $f(\theta)$ is equal to (a) $\tan \theta + \cot \theta$ (b) $2\sin (2\theta)$ (c) $-2 \cot (2\theta)$ (d) 0(c) $-2 \cot(2\theta)$ (d) 0 3. If $0 < \theta < \frac{\pi}{2}$, then $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1}$ is equal to: (a) $1 + \sin \theta + \cos \theta$ (b) $\frac{1 + \sin \theta}{\cos \theta}$ (c) $\frac{1-\cos\theta}{\sin\theta}$ (d) $\tan \theta - \sec \theta$ 4. $\tan 15^\circ$ + $\tan 75^\circ$ is equal to: (a) 1 (b) 2 (c) 3 (d) 4 5. $\sin^2\left(\frac{\pi}{8} + \frac{A}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{A}{2}\right)$ is equal to: (a) $(1/\sqrt{2}) \sin A$ (b) $(1/\sqrt{2}) \cos A$ (c) $\sqrt{2} \sin A$ (d) $\sqrt{2} \cos A$

6. $\frac{\cos 11^\circ - \sin 11^\circ}{\cos 11^\circ + \sin 11^\circ}$ is equal to: (a) $\cot 56^{\circ}$ (b) tan 11° (d) cot 11° (c) $\tan 56^{\circ}$ 7. Suppose α , $\beta > 0$ and $\alpha + 2\beta = \pi/2$, then $\tan (\alpha + \beta) - 2 \tan \alpha - \tan \beta$ is equal to: (b) $tan\beta$ (a) 0(d) $\tan \alpha - \cot \beta$ (c) $\cot\beta$ 8. If sin θ + cosec θ = 2, then $\cos^{2015}\theta$ + $\csc^{2015}\theta$ is equal to: (b) 0 (a) -1(d) 2015 (c) 1 9. If $(1 - \sin A) (1 - \sin B) (1 - \sin C) = (1 + \sin A)$ $(1 + \sin B)$ $(1 + \sin C)$, then each side is equal to: (a) $\pm \cos A \cos B \cos C$ (b) 0 (c) $\pm \sin A \sin B \sin C$ (d) 1 10. $2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13}$ is equal to: (b) 0 (a) -1(d) $\sqrt{3}/2$ (c) 111. If cosec $A + \sec A = \csc B + \sec B$, then $\tan A \tan B$ is equal to: (a) $\tan\left(\frac{A+B}{2}\right)$ (b) $\cot\left(\frac{A+B}{2}\right)$ (c) $\cot\left(\frac{A-B}{2}\right)$ (d) $\tan\left(\frac{A-B}{2}\right)$ 12. If $0 < \theta < \pi/8$, then $\sqrt{2 + \sqrt{2 + 2\cos(4\theta)}}$ is equal to: (a) $2\cos\theta$ (b) $-2\cos\theta$ (c) $2\sin\theta$ (d) $-2\sin\theta$ 13. Let $f(\theta) = \cos \theta \cos 2\theta \cos 4\theta \cos 7\theta$, then $f(\pi/15)$ is equal to: (a) 1/4 (b) 1/8 (c) 1/16 (d) 1/32 14. Let $f(\theta) = \sin \theta \sin 3\theta \sin 5\theta$, then $f(\pi/14)$ is equal to: (a) 1/8 (b) 1/4 (c) 1/7 (d) 1/14

15 For
$$0 < \theta < \pi/4$$
, $\frac{\sec(8\theta) - 1}{\sec(4\theta) - 1} \cdot \frac{\tan(2\theta)}{\tan(8\theta)}$ is equal to
(a) -1 (b) 0
(c) 1 (d) none of these

Prepared by :-SUKUMAR MANDAL (SkM).