

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL-8

SUBJECT - STATISTICS

Pre-test

Chapter: THEORITICAL PROBABILITY DISTRIBUTION

Class: XII

Topic: BINOMIAL PROBABILITY DISTRIBUTION

Date: 19.06.20

PROBABILITY DISTRIBUTION

PART 2

A discrete random variable $X \sim Bin(n, p)$

PROPERTIES:

5. Mean deviation about the mean

5. MODE OF THE RANDOM VARIABLE X.

Mode is defined as observation which contains maximum probability.

So at mode
$$f(x) \ge f(x-1)$$
 and $f(x) \ge f(x+1)$

Simplifying
$$f(x) \ge f(x-1)$$

$$\Rightarrow n_{C_x} p^x (1-p)^{n-x} \ge n_{C_{x-1}} p^{x-1} (1-p)^{n-x+1}$$

$$\Rightarrow \frac{n! \, p^x (1-p)^{n-x}}{(n-x)! x!} \ge \frac{n! \, p^{x-1} (1-p)^{n-x+1}}{(n-x+1)! (x-1)!}$$

$$\Rightarrow \frac{p}{x} \geq \frac{1-p}{n-x+1}$$

$$\Rightarrow (n+1)p \geq x$$
(*)

Simplifying $f(x) \ge f(x+1)$

$$\Rightarrow n_{C_x} p^x (1-p)^{n-x} \ge n_{C_{x+1}} p^{x+1} (1-p)^{n-x-1}$$

$$\Rightarrow \frac{n! \, p^{x} (1-p)^{n-x}}{(n-x)! x!} \ge \frac{n! \, p^{x+1} (1-p)^{n-x-1}}{(n-x-1)! (x+1)!}$$

$$\Rightarrow \frac{1-p}{n-x} \ge \frac{p}{x+1}$$

$$\Rightarrow (n+1)p - 1 \le x \dots (**)$$

Combining (*) and (**), $(n+1)p - 1 \le x \le (n+1)p$

Case1: When the distribution is unimodal and mode lies atX =k, then

$$f(1) < f(2) < \dots < f(k-1) < f(k) > f(k+1) > \dots > f(n-1) > f(n)$$

Then mode is at X=K where, k=[(n+1)p]

Case2: When the distribution is bimodal and mode lies atX =k, then

$$f(1) < f(2) < \dots < f(k-1) = f(k) > f(k+1) > \dots > f(n-1) > f(n)$$

Then mode is at X=K-1 and X= k where, k= (n+1)p which is an integer.

6. RECCURSSION RELATION OF CENTRAL MOMENTS

$$f(x) = n_{C_x} p^x (1-p)^{n-x}$$

$$\Rightarrow \frac{d}{dp} f(x) = n_{C_x} (xp^{x-1}(1-p)^{n-x} - (n-x)p^x (1-p)^{n-x-1})$$

$$= n_{C_x} p^x (1-p)^{n-x} (\frac{x}{p} - \frac{n-x}{1-p})$$

$$= \frac{(x-np)}{n(1-p)} f(x) \dots (*)$$

Now
$$\mu_r = E(X - np)^r$$

= $\sum_{x=0}^n (x - np)^r . f(x)$

$$\frac{d}{dp}\mu_r = \sum_{x=0}^n \{-nr (x-np)^{r-1} . f(x) + (x-np)^{r-1} \frac{(x-np)}{p(1-p)} f(x)\} \text{ (from (*))}$$

$$= -nr \mu_{r-1} + \frac{1}{p(1-p)} \mu_{r+1} \dots (**)$$

Putting r = 2 in (**), we know that $\mu_2 = np(1-p)$ and $\mu_1 = 0$

So
$$\mu_3 = np(1-p)(1-2p)$$

Hence the measure of skewness $\gamma_1=\frac{\mu_3}{\mu_2^2}=\frac{(1-2p)}{\sqrt{np\,(1-p)}}$

 $\gamma_1 < 0 \Rightarrow p > \frac{1}{2} \Rightarrow X$ is negatively skewed.

 $\gamma_1 > 0 \implies p < \frac{1}{2} \implies X$ is positively skewed

$$\gamma_1 = 0 \implies p = \frac{1}{2} \implies X$$
 is symmetric.

Putting x=3 in (**), we get $\mu_4 = 3n^2p^2(1-p)^2 + np(1-p)(1-6np(1-p))$

So, kurtosis
$$\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3 = \frac{(1 - 6np(1 - p))}{np(1 - p)}$$

So depending upon the values of n and p we can determine the kurtosis of the distribution.

7. MAXIMUM VARIANCE OF PROPORTION OF SUCCESS

In case of Bin(n, p), the proportion of success is $\frac{x}{n}$.

$$V\left(\frac{x}{n}\right) = \frac{np(1-p)}{n^2} = v \text{ (say)}.$$

$$\operatorname{Now} \frac{d}{dp} v = \frac{1 - 2p}{n}$$

$$\frac{d^2v}{dp^2} = -\frac{2}{n} < 0$$

$$\frac{d}{dp}v = 0 \Rightarrow \frac{1-2p}{n} \Rightarrow 0 \Rightarrow p = \frac{1}{2}.$$

So at $p = \frac{1}{2}$. V is maximum.

So maximum $v = \frac{1}{4n}$.

Prepared by

Sanjay Bhattacharya