

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

Date: 20.07.2020

WORK SHEET: 32. Subject: PHYSICS

CLASS: XII

Topic: Pure resistance, pure inductance, pure capacitance circuits & phasor diagrams, power factor.

Chapter: Alternating current. Multiple Choice Questions:

 $1 \times 15 = 15$

- In a purely resistive AC circuit, the current 1:
 - (a) lags behind the emf in phase
- (b) is in phase with the emf
- (c) leads the emf in phase
- (d) leads the emf in half the cycle behind it in the other half
- 2: The frequency of an alternating voltage is 50 cycles/s and its amplitude is 120 V. Then, the rms value of voltage is
 - (a) 101.3 V
- (b) 84.8 V (c) 70.7 V (d) 56.5 V

- 3: What is the speed of a phasor which rotates about the origin?
 - (a) 2ω
- (b) $\omega/2$
- (c) ω
- (d) $\omega/4$
- In an AC circuit, $I = 100 \sin 200 \pi t$. The time required for the current to achieve its peak value 4: will be
 - (a) $\frac{1}{100}$ s

- (b) $\frac{1}{200}$ s (c) $\frac{1}{300}$ s (d) $\frac{1}{400}$ s
- 5: In an AC circuit the power factor
 - (a) is zero when the circuit contains an ideal resistance only
 - (b) is unity when the circuit contains an ideal resistance only
 - (c) is unity when the circuit contains a capacitance only
 - (d) is unity when the circuit contains an ideal inductance only

6:

From the above figure, which one of the following option is correct?

- (a) $V-L\frac{di}{dt}=0$ (b) $L-V\frac{di}{dt}=0$ (c) $L+V\frac{di}{dt}$ (d) $2L-V\frac{di}{dt}=0$
- A pure inductor of 25.0 mH is connected to a source of 220 V. Find the inductive reactance if the 7: frequency of the source is 50 Hz.
 - (a) 785Ω
- (b) 6.50Ω
- (c) 7.85Ω
- (d) 8.75Ω

Which of the following graphs represents the correct variation of inductive reactance X_L with 8: angular frequency ω?

- 9: In a purely inductive AC circuit, L = 30.0 mH and the rms voltage is 150 V, frequency v = 50Hz. The inductive reactance is
 - (a) 15.9Ω
- (b) 9.42Ω
- (c) 10Ω
- (d) 8.85Ω
- 10: In a circuit containing an inductance of zero resistance, the emf of the applied AC voltage leads the current by
 - 90^{0} (a)

(b) 45^0

- (c) 30°
- (d) 0^{0}
- 11: Current I across the capacitor in a purely capacitive AC circuit is

 - (a) $i_m \sin(\omega t + \pi/4)$ (b) $i_m \sin(\omega t + \pi/2)$ (c) $i_m \cos(\omega t + \pi/4)$ (d) $i_m \cos(\omega t + \pi/2)$
- 12: The amplitude of the oscillating current in the above capacitive AC circuit is
 - (a) ωCV_m
- (b) $2\omega CV_m$
- (c) $\frac{\omega CV_m}{\Delta}$ (d) $\frac{3\omega CV_m}{2}$
- Which of the following is called capacitive reactance and is denoted by X_C ? 13:
 - (a) ωC
- (b) $1/\omega C$
- (c) $2/\omega C$
- (d) $\omega C/R$
- 14: Which of the following graphs represents the correct variation of capacitive reactance X_C with frequency f?

- 15: A 60 µF capacitor is connected to a 110 V, 60 Hz AC supply. The rms value of the current in the circuit is
 - (a) 2 A
- (b) 2.49 A

- (c) 1.85 A
- (d) 2.05 A