

# ST. LAWRENCE HIGH SCHOOL



## A Jesuit Christian Minority Institution

#### **WORKSHEET - 20**

### <u>Topic - Introduction to Boolean Algebra</u>

Subject: COMPUTER SCIENCE Class - 11 F.M:15

Chapter: Boolean Algebra Date: 08/08/2020

### **Choose the correct answer for each question:**

[5 X 1 = 15]

1. The following truth table belongs to:

| X | У | хy |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

- a) AND operation
- b) OR operation
- c) NOT operation
- d) None of these
- 2. The following truth table belongs to:

| X | У | x+y |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

- a) AND operation
- b) OR operation
- c) NOT operation
- d) None of these
- 3. In boolean algebra, the OR operation is performed by which properties?
  - a) Associative properties
  - b) Commutative properties
  - c) Distributive properties
  - d) All of the Mentioned
- 4. The expression for Absorption law is given by \_\_\_\_\_\_

a) 
$$A + AB = A$$

b) 
$$A + AB = B$$

c) 
$$AB + AA' = A$$

d) 
$$A + B = B + A$$

| 5.  | According to boolean law: A + 1 = ?              |
|-----|--------------------------------------------------|
|     | a) 1                                             |
|     | b) A                                             |
|     | c) 0                                             |
|     | d) A'                                            |
| 6.  | Which law states : $A + B = B + A$ ?             |
|     | a) Associative properties                        |
|     | b) Commutative properties                        |
|     | c) Distributive properties                       |
|     | d) All of the Mentioned                          |
| 7.  | The involution of A is equal to                  |
|     | a) A                                             |
|     | b) A'                                            |
|     | c) 1                                             |
|     | d) 0                                             |
| 8.  | (A + B)(A' * B') = ?                             |
|     | a) 1                                             |
|     | b) 0                                             |
|     | c) AB                                            |
|     | d) AB'                                           |
| 9.  | DeMorgan's theorem states that                   |
|     | a) $(AB)' = A' + B'$                             |
|     | b) (A + B)' = A' * B                             |
|     | c) $A' + B' = A'B'$                              |
|     | d) $(AB)' = A' + B$                              |
| 10. | A (A + B) = ?                                    |
|     | a) AB                                            |
|     | b) 1                                             |
|     | c) (1 + AB)                                      |
|     | d) A                                             |
| 11. | Complement of the expression A'B + CD' is        |
|     | a) $(A' + B)(C' + D)$                            |
|     | b) $(A + B')(C' + D)$                            |
|     | c) $(A' + B)(C' + D)$                            |
|     | d) $(A + B')(C + D')$                            |
| 12. | Simplify $Y = AB' + (A' + B)C$ .                 |
|     | a) AB' + C                                       |
|     | b) AB + AC                                       |
|     | c) A'B + AC'                                     |
|     | d) AB + A                                        |
| 13. | Which law states ( $A.B$ ). $C = A$ . ( $B.C$ )? |
|     | a) Associative properties                        |
|     | b) Commutative properties                        |

- c) Distributive properties
- d) All of the Mentioned
- 14. The boolean function A + BC is a reduced form of \_\_\_\_\_\_
  - a) AB + BC
  - b) (A + B)(A + C)
  - c) A'B + AB'C
  - d) (A + C)B
- 15. The following truth table belongs to :

| Х | F |
|---|---|
| 0 | 1 |
| 1 | 0 |

- a) AND operation
- b) OR operation
- c) NOT operation
- d) None of these

Phalguni Pramanik