

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTIONS OF WORKSHEET-10 <u>SUBJECT - MATHEMATICS</u> <u>1st - Term</u>

Chapter: ALGEBRA Class: XI

Topic: Quadratic Equations Date: 25.07.2020

Choose the correct option $(1 \times 15=15)$

1110	noose the correct option (1 x 15–15)									
1.	One root of the when—							zero		
		$oldsymbol{\mathbb{B}}$	b = 0	©	c = 0	(D)	x = 0			
2.	The roots of the equation $ax^2 + bx + c = 0$ are reciprocal to one another when—									
		$^{\odot}$	a = b	©	b = c	(D)	a = 0			
3.	If the signs of	a an	d c are o	ppo	site to that	of b	then	both		
	roots of the equation $ax^2 + bx + c = 0$ are—									
	zero	® _]	positive	©	negative	(D)	fractio	n		
4.	The roots of the in magnitude a $\triangle a = 0$	nd op	posite in	sign	s when—			qual		
5.	If $b = c = 0$ the	n bot	h roots of	the	equation a	$x^{2} + $	bx + c	= 0		
6.	$(a \neq 0)$ are— ⓐ zero The maximum equation is—	•					_			
	A 1	B 2		©	3	(D) i	nfinite			

	equation $ax^2 + bx + c = 0$ is real and rational and the of							
	root is— zero imaginary	,	real are not de	nd rational efined				
8.	If $a = 0$ and	b = 0 then	both roots	of the equation				
	$ax^2 + bx + c = 0$			•				
	A zero		® real and					
	© imaginary		not defin					
9.	The roots of the equation $ax^2 + bx + c = 0$ are equal when—							
	\triangle $b^2 - 4ac <$		$\bigcirc b^2 - 4ac$	> 0				
	\bigcirc $b^2 - 4ac \geqslant$	0	\bigcirc b^2-4ac	= 0				
10.		square then		ac is positive but of the equation				
	A real	® rational	© irrational	imaginary				
11.	The minimum		6x + 1 is—					
	(A) 0	B 1	© 2	D 3				
12.	The maximum							
	(A) 0	B 1	© 2	© 3				
13.	If 4 is a root of the following is			0, then which of				
		® −2	×	◎ -3				
14.			is the sum of	the roots of the				
	equation $3x^2$ –							
	3 5	B $-\frac{5}{3}$	© -5					

7. If a = 0, $b \neq 0$ and c is real and rational then one root of the

- 15. State which of the following is the product of the roots of the equation $2x^2 3x + 7 = 0$?
 - $\textcircled{A} \quad \frac{3}{2}$
- (a) $\frac{7}{2}$
- © $-\frac{7}{2}$
- **©** 7
- 1.C, 2.A, 3.B, 4.B, 5.A, 6.B, 7.D, 8.D, 9.D, 10.C, 11.A, 12.C, 13.D, 14.D, 15.B

Prepared By -

Mr. Sukumar Mandal (SkM)