

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL-11

SUBJECT – MATHEMATICS

Pre-test

Chapter: Continuity & Differentiability

Topic: Continuity

Class: XII

Date: 15.06.2020

-: Continuity :-

Definition :- Let f(x) be any single valued function of x and x = a be a point in the domain of definition of the function. f(x) is said to be continuous at x = a, if

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$$

Or,
$$\lim_{h\to 0} f(a+h) = f(a)$$
.

- \succ The polynomial function is continuous for all real values.
- > The functions e^x , $\sin x$, $\cos x$ are continuous for all real x.
- > The function $\log_e x$ is continuous for all positive values of x.
- > The functions $\cot x$, $\csc x$ are continuous for all real x other than $x = n\pi$, where n is any integer.
- > The functions $\tan x$, $\sec x$ are continuous for all real x other than $x = (2n+1)\frac{\pi}{2}$, where n is any integer.
- ➢ If the functions f(x) & g(x) are continuous at x = a, then the functions f(x) + g(x); f(x) − g(x);

 $f(x) \cdot g(x)$; $\frac{f(x)}{g(x)} \{When, g(x) \neq 0\}$ & f(g(x)) are also continuous at x = a.

1. Prove that the function f(x) = 5x - 3 is continuous at x = 0, at

x = -3 and at x = 5

Given f(x) = 5x - 3

At x = 0

f(x) is continuous at x = 0 if

 $\lim_{\mathbf{x}\to\mathbf{0}} f(\mathbf{x}) = f(\mathbf{0})$

L.H.S	R.H.S
$\lim_{x \to 0} f(x)$ $= \lim_{x \to 0} (5x - 3)$ Putting $x = 0$ $= 5(0) - 3$	f(0) = 5(0) - 3 = 0 - 3 = -3
= -3	
Since L.H.S = R.H.S	

 $\lim_{\mathbf{x}\to 0} f(\mathbf{x}) = f(0)$

Hence, f is continuous at x = 0

At x = -3

f(x) is continuous at x = -3 if

 $\lim_{x \to -3} f(x) = f(-3)$

L.H.S	R.H.S
$\lim_{\mathbf{x}\to3}f(\mathbf{x})$	f(-3)
$= \lim_{x \to 2^{2}} (5x - 3)$	= 5(-3) - 3
Putting $x = -3$	= -15 - 3
= 5(-3) - 3	= -18
= -18	

Since, L.H.S = R.H.S

$$\therefore \lim_{x \to -3} f(x) = f(-3)$$

Hence, f is continuous at x = -3

At
$$x = 5$$

f(x) is continuous at x = 5 if

$$\lim_{\mathbf{x}\to 5} f(\mathbf{x}) = f(5)$$

L.H.S	R.H.S
$\lim_{x\to 5} f(x)$	f(5)
= lim (5x - 3)	= 5(5) - 3
$x \rightarrow 5$ Putting $x = 5$	= 25 – 3
= 5(5) - 3	= 22
= 22	

Since, L.H.S = R.H.S

 $\lim_{x \to 5} f(x) = f(5)$

Hence, f is continuous at x = 5

Thus the function is continuous at

x = 0, at x = -3 & at x = 5

2. Examine the Following Function for continuity.

f(x) = x - 5

f(x) = x - 5

Since x - 5 is a polynomial.

 \therefore f(x) is defined for every real number c.

Let us check continuity at x = c

f(x) is is continuous at x = c if

$$\lim_{x \to c} f(x) = f(c)$$

$$\frac{LHS}{RHS}$$

$$\lim_{x \to c} f(x) = c - 5$$

$$= \lim_{x \to c} x - 5$$

$$= c - 5$$

Since $\lim_{x \to c} f(x) = f(c)$

So, f is continuous for x = c, where c is a real number

.: f is continuous for all real numbers

Hence, f is continuous for each $x \in R$

3. Examine the Following Function for continuity. f(x) = |x - 5|

$$f(x) = |x - 5|$$

$$=\begin{cases} (x-5), & x \ge 5\\ -(x-5), & x < 5 \end{cases}$$

Since we need to find continuity at of the function

We check continuity for different values of x

- When x = 5
- When x < 5
- When x > 5

Case 1 : When x = 5

f(x) is continuous at x = 5

if
$$L.H.L = R.H.L = f(5)$$

if
$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{+}} f(x) = f(5)$$

Since there are two different

functions on the left & right of 5,

we take LHL & RHL .

LHL at
$$x \rightarrow 5$$

$$\lim_{x \rightarrow 5^{-}} f(x) = \lim_{h \rightarrow 0} f(5 - h)$$

$$= \lim_{h \rightarrow 0} - ((5 - h) - 5)$$

$$= \lim_{h \rightarrow 0} - (-h)$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$
Hence, L.H.L = R.H.L = f(5)
$$\therefore f \text{ is continuous at } x = 5$$
Case 2 : When x < 5
For x < 5,

$$f(x) = -(x - 5)$$
Since this a polynomial
It is continuous

 \therefore f(x) is continuous for x < 5

Case 3 : When x > 5

For x > 5,

f(x) = (x - 5)

Since this a polynomial

It is continuous

 \therefore f(x) is continuous for x > 5

Hence, f(x) = |x - 5| is continuous at all points.

i.e. f is continuous at $x \in R$.

4. Examine the Following Function for continuity. $f(x) = \frac{1}{x-5}, x \neq 5$

at x = 5, f(x) is not defined.

Let us check continuity at x = c, where $x \neq 5$

f(x) is continuous at $x = c, x \neq 5$ if

$\lim_{\mathbf{x}\to c} f(\mathbf{x}) = f(c)$		
LHS	RHS	
$\lim_{\mathbf{x}\to c} f(\mathbf{x})$	$f(c) = \frac{1}{C-5}$	
$= \lim_{x \to c} \frac{1}{x-5}$		
$=\frac{1}{c-5}$		

Since
$$\lim_{x \to c} f(x) = f(c)$$

f is continuous for all real numbers except 5
 $\therefore f$ is continuous at each $x \in \mathbb{R} - \{5\}$
5. Is the function *f* defined by $f(x) = \begin{cases} x, & \text{if } x \leq 1 \\ 5, & \text{if } x > 1 \end{cases}$
continuous at $x = 0$? At $x = 1$? At $x = 2$?
Given $f(x) = \begin{cases} x, & \text{if } x \leq 1 \\ 5, & \text{if } x > 1 \end{cases}$
At $x = 0$
For $x = 0$,
 $f(x) = x$
Since this a polynomial
It is continuous
 $\therefore f(x)$ is continuous for $x = 0$

At x = 1

f(x) is continuous at x = 1

- if L.H.L = R.H.L = f(1)
- if $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$

		Since there are two different
$f(x) = \begin{cases} x, & \text{if } x \le 1\\ 5, & \text{if } x > 1 \end{cases}$	functions on the left & right of 1,	
	we take LHL & RHL .	

LHL at $x \rightarrow 1$	RHL at $x \rightarrow 1$
$\lim_{x\to 1^-} f(x) = \lim_{h\to 0} f(1-h)$	$\lim_{\mathbf{x}\to\mathbf{1^{+}}} f(\mathbf{x}) = \lim_{\mathbf{h}\to0} f(1 + \mathbf{h})$
$=\lim_{h\to 0} (1-h)$	$=\lim_{h\to 0} 5$
= 1 - 0	= 5
= 1 Since L.H.L≠ R.H.L	

f(x) is not continuous at x = 1

At x = 2
For x = 2,

$$f(x) = 5$$

Since this a constant function
It is continuous
 $\therefore f(x)$ is continuous for x = 2
6. Find all points of discontinuity of f, where f is defined by
 $f(x) = \begin{cases} |x| + 3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x + 2, & \text{if } x \ge 3 \end{cases}$
Since we need to find continuity at of the function
We check continuity for different values of x
. When x < -3
. When x = -3
. When -3 < x < 3

- When x = 3
- When x > 3

Case 1 : When x < -3

For x < -3,

f(x) = |x| + 3

f(x) = -x + 3

(As x < −3, x is negative)

Since this a polynomial

It is continuous

 \therefore f(x) is continuous for x < -3

Case 2 : When x = -3

f(x) is continuous at x = -3Since there are two differentifL.H.L = R.H.L = f(-3)functions on the left & right ofif $\lim_{x \to -3^-} f(x) = \lim_{x \to -3^+} f(x) = f(-3)$

LHL at $x \rightarrow -3$ RHL at $x \rightarrow -3$ $\lim_{x \to -3^{-}} f(x) = \lim_{h \to 0} f(-3 - h)$ $\lim_{x \to -3^+} f(x) = \lim_{h \to 0} f(-3 + h)$ $=\lim_{h\to 0} (|-3-h|+3)$ $=\lim_{h\to 0} -2(-3+h)$ = |-3 - 0| + 3 $= \lim_{h \to 0} 6 - 2h$ = |-3| + 3= 6 - 0= 3 + 3= 6 = 6 & f(-3) = |-3| + 3= 3 + 3= 6

Hence, L.H.L = R.H.L = f(-3)

 $\therefore f$ is continuous at x = -3

Case 3 : When -3 < x < 3

For -3 < x < 3,

f(x) = -2x

Since this a polynomial

It is continuous

 \therefore f(x) is continuous for -3 < x < 3

Case 4 : When x = 3

Since there are two different f(x) is continuous at x = 3functions on the left & right of 3, L.H.L = R.H.L = f(3)if we take LHL & RHL. $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(\overline{3})$ if RHL at $x \rightarrow 3$ LHL at $x \rightarrow 3$ $\lim_{x\to 3^-} f(x) = \lim_{h\to 0} f(3-h)$ $\lim_{x \to 3^{+}} f(x) = \lim_{h \to 0} f(3 + h)$ $= \lim_{h \to 0} -2(3 - h)$ $=\lim_{h\to 0} 6(3+h) + 2$ $= \lim_{h \to 0} 18 + 6h + 2$ $=\lim_{h\to 0} -6 + 2h$ = -6 + 0 $= \lim_{h \to 0} 20 + 6h$ = -6 = 20 + 0= 20 Since L.H.L ≠ R.H.L f(x) is not continuous at x = 3

Case 5: When x > 3

For x > 3,

f(x) = 6x + 2

Since this a polynomial

It is continuous

 \therefore f(x) is continuous for x > 3

Hence, f is discontinuous at only x = 3

Thus, f is continuous at all real numbers except 3.

f is continuous at $x \in R - \{3\}$

Prepared by -

Mr. SUKUMAR MANDAL (SkM)