

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORK SHEET 5

Subject: PHYSICS

CLASS: XII Date: 8.5.20

Topic: Torque on Dipole, Potential, Potential due to

Dipole on Axial and Perpendicular bisector point.

Multiple Choice Question:

Chapter: Electrostatics

 $1 \times 15 = 15$

1. A dipole of dipole moment \overrightarrow{P} is placed in uniform electric field \overrightarrow{F} then torque acting on it is given

(a)
$$\frac{\rightarrow}{\tau} = \frac{\rightarrow}{P} \cdot \frac{\rightarrow}{F}$$

(b)
$$\overrightarrow{\tau} = \overrightarrow{P} \times \overrightarrow{E}$$

(c)
$$\frac{\rightarrow}{\tau} = \frac{\rightarrow}{P} + \frac{\rightarrow}{E}$$

(d)
$$\frac{\rightarrow}{\tau} = \frac{\rightarrow}{P} - \frac{\rightarrow}{E}$$

2. An electric dipole is placed at an angle of 30° with an electric field intensity 2 x 10⁵ N C⁻¹. It experiences a torque equal to 4 N m. The charge on the dipole, if the dipole length is 2 cm, is

(d)
$$7 \mu$$
C

An electric dipole with dipole moment $\stackrel{\rightarrow}{P} = (2\hat{i} + 3\hat{j})$ cm is kept in electric field $\stackrel{\rightarrow}{E} = 4\hat{i}$ N/C. The torque

(a)
$$-12\hat{k}$$
 (Nm)

(b)
$$8\hat{k}$$
 (Nm)

(c)
$$12k^{\hat{}}$$
 (Nm)

$$(d) -8k$$
 (Nm)

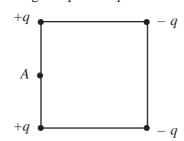
Number of Statvolt corresponding to 1 volt is :

(a)
$$\frac{1}{100}$$

(b)
$$10^9$$

(c)
$$\frac{1}{300}$$

Four point changes each + q is placed on the circumference of a circle of diameter 2d in such a way that they form a square. The potential at the centre of the circle (in CGS) is:


(b)
$$\frac{4q}{d}$$

(c)
$$\frac{4d}{q}$$

(d)
$$\frac{q}{4d}$$

The radius of a soap bubble whose potential is 16 V is doubled. The new potential of the bubble is :

Four electric charges +q, +q, -q are placed at the corners of a square of side 2L. The electric potential at point A midway between the two charges +q and +q is

(a)
$$\frac{1}{4\pi \epsilon_0} \frac{2q}{L} (1 + \sqrt{5})$$

(b)
$$\frac{1}{4\pi \epsilon_0} \frac{2q}{L} \left(1 + \frac{1}{\sqrt{5}} \right)$$

(a)
$$\frac{1}{4\pi \epsilon_0} \frac{2q}{L} (1 + \sqrt{5})$$
 (b) $\frac{1}{4\pi \epsilon_0} \frac{2q}{L} \left(1 + \frac{1}{\sqrt{5}} \right)$ (c) $\frac{1}{4\pi \epsilon_0} \frac{2q}{L} \left(1 - \frac{1}{\sqrt{5}} \right)$

8.	3. The electric potential at a point on the axis of an electric dipole depends on the distance x of from the dipole as:			the distance x of the point
	(a) ∞x	(b) $\infty \frac{1}{x}$	(c) $\infty \frac{1}{x^2}$	(d) $\infty \frac{1}{x^3}$
9.	The electric potential at the surface of an atomic nucleus ($Z = 50$) of radius of 9 x 10^{-15} m:			
	(a) 80 V	(b) 9V	(c) $9 \times 10^5 \text{V}$	(d) $8 \times 10^5 V$
10.	Two charges – 10C and + 10C are placed 10 Cm apart. Potential at the centre of the line joining the two charges is			
	(a) zero	(b) 2 V	(c) -2 V	(d) None of these
11.	Two charges each equal to q are placed at the corners of a square of side l . The electric potential at the centre of the square is :			
	(a) $\frac{1}{4\pi\epsilon_0} \frac{4q}{l}$	(b) $\frac{1}{4\pi\varepsilon_0} \frac{4q}{\sqrt{2l}}$	(c) $\frac{1}{\pi \varepsilon_0} \frac{\sqrt{2}q}{l}$	(d) $\frac{1}{\pi \varepsilon_0} \frac{2q}{l}$
12.	Two concentric spheres of radii R and r have similar charges with equal surface densities (at the electric potential at their common centre?			
	(a) $\frac{\sigma}{\varepsilon_0}$	(b) $\frac{\sigma}{\varepsilon_0} (R-r)$	(c) $\frac{\sigma}{\varepsilon_0}$ $(R+r)$	(d) None of the above.
13.	At a point A , there is an electric field of 500 V/m and potential of 3000 V. The distance between the point charge and A is :			
	(a) 6 m	(b) 12 m	(c) 36 m	(d) 144 m
14.	Potential at a point on the perpendicular bisector of a dipole is :			
	(a) zero	(b) 1	(c) $\frac{q}{2l}$	(d) $\frac{l}{q}$
15.	Potential at a distance r from the mid point of a dipole of length $2l$ on the axis of it is:			
	(a) zero	$\text{(b) } \frac{1}{4\pi \in 0} \cdot \frac{p}{r^2 - l^2}$	$(c) \ \frac{1}{4\pi \epsilon_0} \cdot \frac{2p}{r^2 - l^2}$	$(d) \frac{P}{r^2 - l^2}$
				Ambarnath Banerjee