

- 8. Change of volume of gas depends on
 - a. Initial volume
 - b. Change of temperature
 - c. Pressure on the gas
 - d. All of the above

Ans: d. All of the above

- 9. The volume expansion coefficient of ideal gas at constant pressure, depends on
 - a. Nature of gas
 - b. Change of temperature
 - c. Initial volume
 - d. None of the above

```
Ans: d. None of the above
```

- 10. Two different ideal gasses of volume v and 2v are mixed at constant pressure. Volume expansion coefficient of the mixture
 - a. Will remain same to $\frac{1}{273}$
 - b. Will be $\frac{1}{91}$
 - c. Depends on the nature of the gasses
 - d. None of these

Ans: Will remain same to $\frac{1}{273}$

- 11. The relation $\alpha: \beta: \gamma = 1: 2: 3$, is valid in case of
 - a. only Solid
 - b. only Liquid
 - c. only Gas
 - d. solid, liquid and gas all.

Ans: a. only Solid

- 12. 1*cc* ideal gas is heated (keeping pressure constant), such that the temperature increases from 0° C to 1° C. The increase in volume will be
 - a. 1cc
 - b. 273 cc
 - c. $\frac{1}{273}$ cc
 - d. None of these
 - Ans: c. $\frac{1}{273}$ cc
- 13. γ of any ideal gas at constant pressure is same, because
 - a. Ideally the gas molecules do not exert any force on each other
 - b. Gas molecules are mass less
 - c. Kinetic energy of gas molecules increase when temperature is increased
 - d. All of these

Ans: a. Ideally the gas molecules do not exert any force on each other

- 14. At constant pressure, certain amount of ideal gas is heated from 0°C. At what temperature the increase in volume will be equal to the initial volume?
 - a. 273 K
 - b. 0 K
 - c. $\frac{1}{273}$ °C
 - d. 273 °C
 - Ans: d. 273 °C
- 15. 32g of O_2 gas is taken at STP and then heated to 273°C (keeping pressure constant). What will be the volume of the gas at that temperature?
 - a. 22.4 lit
 - b. $\frac{22.4}{273}$ lit

 - c. 44.8 lit d. None of these
 - Ans: c. 44.8 lit

Name of the teacher – Soumitra Maity