A JESUIT CHRISTIAN MINORITY INSTITUTION

CLASS 8
SUBJECT :ArithmeticWork sheet16 answer key
Marks:15 Circle(Circumference)
Date:24.4.2020

Answer all thefollowing questions($1 \times 15=15$)

1. The radii of two circles are 19 cm and 9 cm respectively. The radius of the circle which has circumference equal to the sum of the circumference of two circles is
(a) 35 cm
(b) 10 cm
(c) 21 cm
(d) 28 cm

Answer: d
Explaination: Reason: Let the radii of two circles be r_{1} and r_{2} and the radius of large circle be r.
$\therefore r_{1}=19 \mathrm{~cm}, r_{2}=9 \mathrm{~cm}$
Circumference of two circles $=\mathrm{C}_{1}+\mathrm{C}_{2} \ldots$ (where $\mathrm{C}=$ circle)
$=2 \pi r_{1}+2 \pi r_{2}=2 \pi \times 19+2 \pi \times 9=38 \pi+18 \pi=56 \pi$
\therefore Circumference of large circle $=56 \pi$
$\Rightarrow 2 \pi r=56 \pi$
$\Rightarrow r=28$
\therefore Radius of large circle $=28 \mathrm{~cm}$
2. The perimeter (in cm) of a square circumscribing a circle of radius a cm , is
(a) 8 a
(b) 4 a
(c) 2 a
(d) 16 a

Answer: a
Explaination:
(a) Side of a square circumscribing a circle of radius a $\mathrm{cm}=$ diameter of circle $=2$ a cm
\therefore Perimeter of the square
$=4 \times 2 \mathrm{a}=8 \mathrm{a} \mathrm{cm}$
3. The diameter of a wheel is 1.26 m . The distance travelled in 500 revolutions is
(a) 2670 m
(b) 2880 m
(c) 1980 m
(d) 1596 m

Answer: c
Explaination:
(c) Radius of the wheel $=1.262=0.63 \mathrm{~m}$

Distance travelled in one revolution
$=2 \pi r=2 \times 22 / 7 \times 0.63$
$=3.96 \mathrm{~m}$
\therefore Distance travelled in 500 revolutions
$=500 \times 3.96$
$=1980 \mathrm{~m}$.
4. If the sum of the circumferences of two circles with radii R_{1} and R_{2} is equal to the circumference of a circle of radius R, then
(a) $R_{1}+R_{2}=R$
(b) $R_{1}+R_{2}>R$
(C) $R_{1}+R_{2}<R$
(d) nothing definite can be said about the relation among R_{1}, R_{2} and R

Answer: a
Explaination:
(a) $2 \pi R_{1}+2 \pi R_{2}=2 \pi R$
$\Rightarrow R_{1}+R_{2}=R$.
5. If the circumference of a circle is 2π units, then diameter of circle is
(a) 4
(b) 2
(c) 1
(d) 5

Answer: b
Explanation: $2 \pi r=2 \pi, r=1,2 r=2$
6. If the difference between the diameter and the radius of a circle is 37 cm , then using $\pi=22 / 7$ the circumference (in cm) of the circle is:
(a) 154
(b) 44
(c) 14
(d) 7

Answer: b
Explaination:
(b) A.T.Q.

$$
\begin{aligned}
2 \pi r-r & =37 \\
\Rightarrow \quad 2 \times \frac{22}{7} r-r & =37 \\
\frac{37}{7} r & =37 \Rightarrow r=7 \mathrm{~cm}
\end{aligned}
$$

$$
\therefore \text { Circumference }=2 \times \frac{22}{7} \times 7=44 \mathrm{~cm}
$$

7. If π is taken as $22 / 7$, the distance (in metres) covered by a wheel of diameter 35 cm , in one revolution, is
(a) 2.2
(b) 1.1
(c) 9.625
(d) 96.25

Answer: b
Explaination:
(b) Distance covered by a wheel in one
revolution $=2 \pi r=2 \times 22 / 7 \times 352$
$=110 \mathrm{~cm}=1.1 \mathrm{~m}$
8. A circular wire of radius 42 cm is cut and bent into the form of a rectangle whose sides are in the ratio of $6: 5$. The smaller side of the rectangle is
(a) 30 cm
(b) 60 cm
(c) 70 cm
(d) 80 cm

Answer: b
Explaination:
(b) Length of wire $=2 \pi r$
$=2 \times 22 / 7 \times 42=264 \mathrm{~cm}$
Let sides of rectangle are $6 x$ and $5 x$
$\Rightarrow 2(6 x+5 x)=264$
$\Rightarrow 11 \mathrm{x}=132$
$\Rightarrow x=12$
\therefore Smaller side $=12 \times 5=60 \mathrm{~cm}$
9. The diameter of the wheel of a bus is 1.4 m . The wheel makes 10 revolutions in 5 seconds. The speed of the vehicle (in kmph) is \qquad .
(a) $31.68 \mathrm{~km} / \mathrm{hr}$
(b) $30 \mathrm{~km} / \mathrm{hr}$
(c) $28 \mathrm{~km} / \mathrm{hr}$
(d) $25 \mathrm{~km} / \mathrm{hr}$

Answer: a
Explaination:
Circumference of the wheel $=\pi \times 1.4 \mathrm{~m}$

$$
=\frac{22}{7} \times 1.4=4.4 \mathrm{~m}
$$

\therefore Distance covered in 10 revolutions

$$
\begin{aligned}
& =10 \times 4.4 \mathrm{~m}=44 \mathrm{~m} \\
\therefore \quad \text { Speed } & =\frac{44}{5} \mathrm{~m} / \mathrm{s} \\
& =\frac{44}{5} \times \frac{18}{5} \mathrm{~km} / \mathrm{h} \\
& =31.68 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

10. If the wheel of an engine of a train is $30 / 7 \mathrm{~m}$ in circumference makes seven revolutions in 4 seconds, then the speed of the train is \qquad km/h
(a) $27 \mathrm{~km} / \mathrm{hr}$
(b) $30 \mathrm{~km} / \mathrm{hr}$
(c) $28 \mathrm{~km} / \mathrm{hr}$
(d) $25 \mathrm{~km} / \mathrm{hr}$

Answer: a
Explaination:
$27 \mathrm{~km} / \mathrm{h}$
Hint: Speed of the train

$$
=7 \times \frac{30}{7} \times \frac{60}{4} \times \frac{60}{1000}=27 \mathrm{~km} / \mathrm{h}
$$

11. A bicycle wheel makes 5000 revolutions in moving 11 km . The diameter of the wheelis
(a) 70 cm
(b) 60 cm
(c) 50 cm
(d) 25 cm

Answer:a
Explaination:
Distance covered in 5000 revolutions

$$
=11 \mathrm{~km}
$$

Distance covered in 1 revolution

$$
=\frac{11000}{5000} \mathrm{~m}=\frac{11}{5} \mathrm{~m}
$$

Distance covered in 1 revolution
= circumference of the wheel

$$
\begin{array}{rr}
\Rightarrow & 2 \pi r=\frac{11}{5} \Rightarrow 2 \times \frac{22}{7} \times r=\frac{11}{5} \\
\Rightarrow \quad r=\frac{11}{5} \times 7 \times \frac{1}{2 \times 22}=\frac{7}{20} \mathrm{~m} \\
\therefore \quad \text { Diameter }=2 \times r=2 \times \frac{7}{20}=\frac{7}{10} \mathrm{~m} \\
& =\frac{7}{10} \times 100 \mathrm{~cm}=70 \mathrm{~cm}
\end{array}
$$

12. If the diameter of a semicircular protractor is 14 cm , then its perimeter is
(a) 36 cm
(b) 30 cm
(c) 40 cm
(d) 45 cm

Answer:a
Explaination:

$$
d=14 \mathrm{~cm} \Rightarrow r=7 \mathrm{~cm}
$$

$$
\text { Perimeter }=\frac{1}{2} \times 2 \pi r+d
$$

$$
=(22+14) \mathrm{cm}
$$

$$
=36 \mathrm{~cm}
$$

13.Perimeter of semi circle of radius r is

$$
\text { (a) } \pi r+2 r
$$

b) 3 r
(c) $\pi+r$
(d) $\pi-2 r$

Answer: a
14. Value of π is
(a) 3.14
(b) 3.20
(c) 3.41
(d) 31.4

Answer: a
15.Perimeter of quadrant of a circle of radius r is
(a) $\pi r / 2+2 r$
(b) 3 r
(c) $\pi+r$
(d) $\pi-2 r$

Answer:a

