

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION TO WORK SHEET 19

Subject : PHYSICS

20.6.20

 $1 \times 15 = 15$

CLASS : XII	Topic : B on the axis of a circular coil & it's center.
Chapter : Electromagnetism	Ampere's circuital law and it's application
	to find B for infinite current carrying wire.

Multiple Choice Question :

- 1. Which one of the followings is not true for Ampere's law?
 - (a) this law is differential form of **B**
 - (b) this law is based on the principal of electromagnetism
 - (c) this law is related to closed current carrying curve
 - (d) this law is valid for symmetrical current distribution
 - Ans. (a) this law is differential form of ${\bf B}$
- 2. A circular coil of radius R carries an electric current *i*. The magnetic field at a point on the axis at a distance x from the centre of the coil($x \gg R$) varies as

(a)
$$\frac{1}{x}$$
 (b) $\frac{1}{x^{3/2}}$ (c) $\frac{1}{x^2}$ (d) $\frac{1}{x^3}$
Ans. (d) $\frac{1}{x^3}$

3. For a wire of infinite length \vec{B} is

(a)
$$B = \frac{\mu_o i}{2\pi r}$$
 (b) $B = \frac{2\pi r}{\mu_o i}$ (c) $B = o$ (d) $B = \frac{2\mu_o i}{r}$

Ans. (a) $B = \frac{\mu_o t}{2\pi r}$

4. Magnetic field on the axis of a current carrying circular coil is

(a)
$$B = \frac{\mu_o i}{2} \cdot \frac{r^2}{(r^2 + x^2)^{3/2}}$$
 (b) $B = \mu_o ni$ (c) $B = \frac{\mu_o i}{2} \cdot \frac{(r^2 + x^2)^{3/2}}{r^2}$ (d) none of the above
Ans. (a) $B = \frac{\mu_o i}{2} \cdot \frac{r^2}{(r^2 + x^2)^{3/2}}$

5. \vec{B} at the centre of the current carrying circular coil having N turns

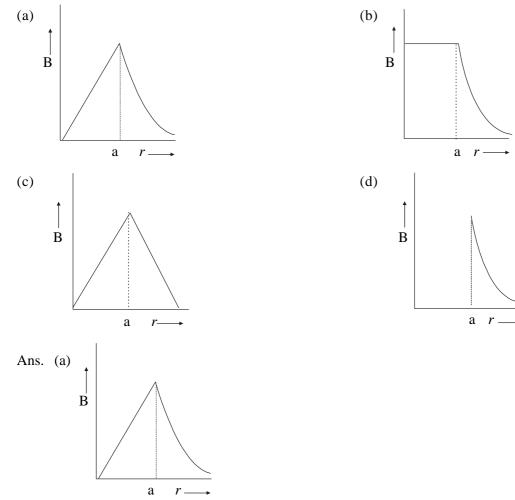
(a)
$$B = \frac{\mu_o NI}{2r}$$
 (b) $B = \frac{\mu_o I}{2r}$ (c) $B = \mu_o NI$ (d) $B = \frac{\mu_o NI}{r}$
Ans. (a) $B = \frac{\mu_o NI}{2r}$

6. Magnetic intensity (in CGS) at the centre of a current causing circular conductor is

(a)
$$H = \frac{2\pi i}{r}$$
 (b) $H = \frac{2i}{r}$ (c) $H = \frac{\pi i}{r}$ (d) $H = \frac{2\pi r}{i}$
Ans. (a) $H = \frac{2\pi i}{r}$

7. Expression for closed line integnel —

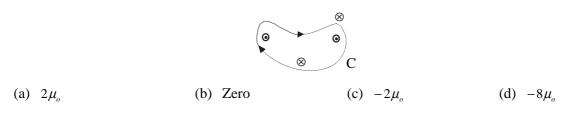
(a)
$$\oint \vec{A}.\vec{dl}$$
 (b) $\int \vec{A}.\vec{dl}$ (c) $\int_{p}^{Q} \vec{A}.\vec{dl}$ (d) $\oint_{p}^{Q} \vec{A}.\vec{dl}$
Ans. (a) $\oint \vec{A}.\vec{dl}$


8. The magnetic induction at a point *P* which is distant 4 cm from a long current carrying wire is 10^{-8} *Tesla*. The field of induction at a distance 12 cm from the same current would be

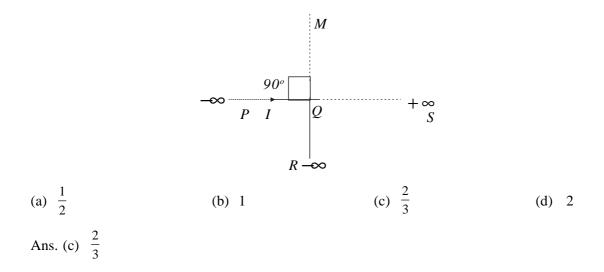
(a) 3.33×10^{-9} Tesla (b) 1.11×10^{-4} Tesla (c) 3×10^{-3} Tesla (d) 9×10^{-2} Tesla Ans. (a) 3.33×10^{-9} Tesla

- 9. For the magnetic field to be maximum due to a small element of current carrying conductor at a point, the angle between the element and the line joining the element to the given point must be
 - (1) 0^0 (2) 90^0 (3) 180^0 (4) 45^0

Ans. (2) 90°


10. The magnetic field due to a straight conductor of uniform cross-section of radius a and carrying a steady current is represented by

11. The distance at which the magnetic field on axis as compared to the magnetic field at the centre of the coil carrying current I and radius R is 1/8, would be


(a) R(b) $\sqrt{2R}$ (c) 2R(d) $\sqrt{3R}$ Ans. : (d) $\sqrt{3R}$

12. Four conductors carrying 2.0 A of current into or out of the page are shown in the diagram. A path C is indicated for the line integral ∫B.ds. Find the value of the integral for the path C

Ans. : (c) $-2\mu_o$

13. An infinitely long conductor PQR is bent to form a right angle as shown. A current I flows through PQR. The magnetic field due to this current at the point M is H_1 .Now, another infinitely long straight conductor QS is connected at Q, so that the current is 1/2 in QR as well as QS. The current in PQ remaining unchanged. The magnetic field at M is now H_2 . The ratio H_1/H_2 is given by

- 14. A polygon shaped wire is inscribed in a circle of radius R. The magnetic induction at the centre of polygon, when current flows through the wire is
 - (a) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{2\pi}{n}\right)$ (b) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{4\pi}{n}\right)$ (c) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{\pi}{n}\right)$ (d) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{\pi}{n^2}\right)$ Ans. (c) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{\pi}{n}\right)$
- 15. Magnitude of magnetic field is maximum for a current carrying conductor
 - (a) at the centre (b) either side of the axis
 - (c) at infinity (d) none of the above
 - Ans. (a) at the centre

Ambarnath Banerjee