

Q1.

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION OF WORKSHEET-9

SUBJECT - STATISTICS

Term: 1st

Topic - BINOMIAL DISTRIBUTION	Class: XII
Full Marks: 15	Date:09.06.2020

Select	the correct alternati	ve of the followi	ng questions.			
(i)	Binomial distribution is used for the random variable which is					
	a) discrete	b) continuou	s c) both		d) none of these	
	b)					
(ii)	The trials in binomial distribution are					
	a) finite	b) countable	c)countably	y finite	d) none of these	
(iii)	The trials in binomial distribution are					
	a) independent	b) dependent	c) lin indep	endent	d) none of these	
(iv)	In each trial of binomial distribution, no of outcomes is					
	a) 1	b) 2	c) 3	d) no	ne of these	
(v)	When an unbiased coin is tossed 5 times the probability of getting atmost one head is					2
	a) $\frac{3}{16}$	b) $\frac{5}{16}$	c) 0	d) no	ne of these	
(vi)	Th range of binomial distribution Bin(n, p) is					
	a) 1(1) n	b) 1(2)n	c) 0(1) n	d) no	one of these	
(vii)	For a binomial distribution (n, p) , $cov(x, n-x)$ is					
` /	a) V (X)	$\mathbf{b}) - \mathbf{V}(\mathbf{X})$			ne of these	

(viii)	In a Bin $(n, \frac{1}{2})$, P $(X = 0 \cap X = n)$				
		b) $\frac{1}{2^n}$	$c)\frac{1}{2^{2n}}$	d) none of these	
(ix)	$X \sim Bin(8, p)$ and $Y \sim Bin(8, q)$ independently, then correlation coefficient between Y and X is				
	a) 0	b) 0.5	c) -0.5	d) none of these	
(x)	$X \sim Bin(n, p), P(X \le a)$ left continuous		nuous c)continuous	d) none of these	
(xi)	If for a random varia a) Positine		then all the observation c)a &b both	ns are d) n0ne of these	
(xii)	If a random variable realises infinite values, then expectation of that random variable must be				
	a) infinite	b) negative	c) zero	d)) none of these	
(xiii)	If there are n values of	f a random variab	le and each with probabi	llity $\frac{1}{n}$, then E(X)=	
	a) $\frac{n+1}{2}$.	b) $\frac{n}{2}$	c) zero	d)) none of these	
(xiv)	For a random variable a) 0	X, E($X - E(X)$) b) 1		d) none of these	
(xv)	For a radom variable X a) Variance b) h	X , $(E(X^{-1})^{-1}$ der armonic mean		d) none of these	

Prepared by
 Sanjay Bhattacharya