

SOLUTION OF WORKSHEET-28

SUBJECT - STATISTICS

Term : 2nd

Topi Full	c – Sam Marks:	pling & proba 15	bility distrib	ution		Class Date:	: XII 23 .11. 2020		
Q1.	Select the correct alternative of the following questions.								
	(i)	The expectation a) 4	on in Poisson d b) 6	listributi c) 3	on (3) is		d) none of these		
	(i)	The variance b) 2	in Poisson dist b) 3	ribution c) 2.25	(2) is		d) none of these		
	(iii)	Binomial dist a) small	ribution tends t b) large	co Poisso c) 0.5	on distribution v	when p	o is too d) none of these		
	(iv)	Binomial dist a) small	ribution tends t b) large	co Poisso c) 0.5	on distribution v	when n	is too d) none of these		
	(v)	Defining the p (a) planning	oopulation in sa (b)execution	ample su	urvey is a part o (c)analysis	ſ	(d) none of these		
	(vi)	Selection of n (a) planning	nethod of colle (b)execution	ction is a	a part of (c)analysis		(d) none of these		
	(vii)	Designing the (a) planning	survey is a par (b)execution	rt of	(c)analysis		(d) none of these		
	(viii)	Traning of per (a) planning	rsonnel is a par (b)execution	rt of	(c)analysis		(d) none of these		
	(ix)	For a binomia a) 0	l distribution in b) 1	f mean i	s equal to its va c) either 0 or 1	riance,	then p is equal to d) none of th		

(x)	The binomial distribution $(n+2, \frac{p}{2})$ is symmetric if and only if							
	a) p = 1	b) p > 1	c) p< 1	d) none of these				
(xi)	The binomial distribution(n+3, p) is positively skewed if and only if							
	a) $p = \frac{1}{2}$	b) $p > \frac{1}{2}$	c) $p < \frac{1}{2}$	d) none of these				
(xii)	The binomial distribution(n+3, p) is negatively skewed if and only if							
	a) $p = \frac{1}{2}$	b) p > $\frac{1}{2}$	c) $p < \frac{1}{2}$	d) none of these				
(xiii)	The binomial distribution $(n+3, p)$ attains maximum variance at							
	a) p = $\frac{1}{2}$	b) $p > \frac{1}{2}$	c) $p < \frac{1}{2}$	d) none of these				
(xiv)	The binomial distribution(n, p) the minimum variance is							
	a) $p = \frac{1}{2}$	b) $p = \frac{n}{4}$	c) $p < \frac{1}{2}$	d) none of these				
(xv)	If $X \sim Poisson(0.5)$, then P(X=0) is							
	a) e ^{-0.5}	b) <i>e</i> ^{0.5}	c) <i>e</i> ⁻³	d) none of these				

Prepared by

SANJAY BHATTACHARYA