

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL-8

SUBJECT – MATHEMATICS

Pre-test

Chapter: Relations & Functions

Topic: Mapping or Function

Class: XII

Date: 09.06.2020

UNIT-I: RELATIONS AND FUNCTIONS (WBCHSE SYLLABUS).

1. Relations and Functions :

Types of relations : reflexive, symmetric, transitive and equivalence relations. One to one and onto functions, composite functions, inverse of a function. Binary operations.

2. Inverse Trigonometric Functions :

Definition, range, domain, principal value branches. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.

Total Marks : 08

-: MAPPING OR FUNCTION :-

Topic Covered:-

- 1. Recapitulation (Some definitions)
- 2. Kinds of Function
- 3. Composition of Function
- 4. Inverse of a function.
- 1. Recapitulation (Some definitions) :-
 - A) Definition of Function :- A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B.

In other words, a function f is a relation from a non-empty set A to a non-empty set B such that the domain of f is A and no two distinct ordered pairs in f have the same first element.

For F If *B* is subset of the set of all real variables i.e. \mathbb{R} , then the function is called real valued function.

For the function is called real function. If both $A \otimes B$ are subsets of the set of all real variables i.e. \mathbb{R} , then the function is called real function.

Graphical representation,

- B) Domain, co-domain & range of a function :- Let . $f: A \rightarrow B$ be a function.
 - i. Then the set *A* is known as the domain of *f*.
 - ii. Then the set *B* is known as the co-domain of *f*.
 - iii. $f(A) = \{ f(x) : x \in A \} =$ Range of . Clearly, $f(A) \subseteq B$.

- 2. Kinds of Function :-
 - A) **One-one (or injective) function :-** A function $f: A \rightarrow B$ is defined to be one-one (or injective), if the images of distinct elements of A under f are distinct.

i.e. $f: A \to B$ is injective $\Leftrightarrow f(a) = f(b) \Rightarrow a = b$; $\forall a, b \in A \Leftrightarrow a \neq b \Rightarrow f(a) \neq f(b)$; $\forall a, b \in A$

Graphical representation,

- ***** Example :- Let, $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = 3x^3 2, \forall x \in \mathbb{R}$.
- B) **Many-one function :-** A function $f: A \to B$ is defined to be many-one, if two or more elements of A have the same image in B under f.
- i.e. f(a) = f(b); when $a \neq b$ for some $a, b \in A$.

- ***** Example :- Let, $f: \mathbb{Z} \to \mathbb{Z}$, defined by $f(x) = |x|, \forall x \in \mathbb{Z}$.
- C) Into function :- A function $f: A \to B$ is defined to be Into function if the range set is a proper subset of B. i.e. $\{f(x) : x \in A\} \subset B$.

D) **On-to (or surjection) function :-** A function $f: A \to B$ is defined to be on-to (or surjective), if every element in B, has at least one preimage in A under f. In other words, the range set { $f(x) : x \in A$ } = B. i.e. $\forall y \in B$, $\exists x \in A$ such that f(x) = y.

- ***** Example :- Let, $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^3 + 2, \forall x \in \mathbb{R}$.
- E) **<u>Bijective function :-</u>** A function $f: A \rightarrow B$ is defined to be bijective if it is One-one & Onto.

- ★ Example :- Let, $A = \{x \in \mathbb{R} : -1 \le x \le 1\} = B$. $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x|x|, \forall x$.
- F) **Constant function :-** A function $f: A \rightarrow B$ is defined to be constant if the range set is singleton set. i.e. all elements in A have the same image in B under F.

★ Example :- Let, $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = 5, \forall x \in \mathbb{R}$.

- G) Identity function :- A function $f: A \to A$ is defined to be Identity function if each element of A is mapped on itself. It is denoted by I_A . i.e. $I_A: A \to A$ is given by $I_A(x) = x, \forall x \in A$.
 - - ✓ Note that identity map is a bijective mapping.
- 3. Composition of Function :-

Let, $f: A \to B$ and $g: B \to C$ be two functions. Then the function $g \circ f: A \to C$ defined by $(g \circ f)(x) = g(f(x)), \forall x \in A$ is called the composition of *f* and *g*.

★ Example :- Let, $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ where $f(x) = \sin x$ and $g(x) = x^2$. Then, $(g \circ f)(x) = g(f(x)) = g(\sin x) = (\sin x)^2$.

Properties of composition of functions :-

- a) The composition of functions is associative.
- b) The composition of functions, in general, is not commutative.
- c) The composition of two bijective functions is bijective.
- d) The composition of any function with the identity function is the function itself.
- e) Let, $f: A \to B$ and $g: B \to A$ be two functions such that $g \circ f = I_A$. Then f is an injection and g is a surjection.
- f) Let, $f: A \to B$ and $g: B \to A$ be two functions such that $f \circ g = I_B$. Then g is an injection and f is a surjection.
- 4. Inverse of a function :-

Let , $f: A \to B$ be a bijective function.. Then a function $g: B \to A$ which associates each element $y \in B$ to a unique element $x \in A$ such that f(x) = y is called the inverse of f. The inverse of f is generally denoted by f^{-1} . Properties of inverse of function :-

- a) The inverse of bijective mapping is unique.
- b) The inverse of bijective mapping is bijective.
- c) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- d) Let, $f: A \to B$ and $g: B \to A$ be two functions such that both $g \circ f$ and $f \circ g$ are identity mappings on A and B respectively. Then $g^{-1} = f$.

Prepared by -

Mr. SUKUMAR MANDAL (SkM)