

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

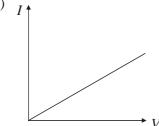
WORK SHEET 11

Subject: PHYSICS

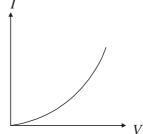
Date: 9.6.20 CLASS: XII

Topic: Current, ohm's law, resistance, conductance, temp. depen-

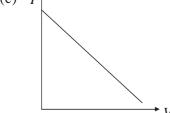
dence of R, series and parallel combination of R.

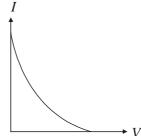

Multiple Choice Question:

Chapter: Current Electricity


 $1 \times 15 = 15$

- The current in a conductor varies with time t as $I = 2t + 3t^2$, where I is in ampere and t in second. Electric charge flowing throuh a section of the conductor during t = 2 s to t = 3 s is
 - (a) 10 C
- (b) 24 C
- (c) 33 C
- (d) 44 C
- 2. Which of the following graphs represents the variation of current (I) through a metallic conductor with its terminal potential difference (V)?





- The dimension of resistance is
 - (a) $ML^2T^{-3}I^{-1}$
- (b) $ML^2T^{-1}I^{-1}$ (c) $ML^2T^{-3}I^{-2}$
- (d) $ML^2T^{-1}I^{-2}$
- 4. Resistivity of copper is 1.76 x $10^{-6} \Omega$ cm. What will be the resistnce between two opposite faces of a copper cube of side 1 m?
 - (a) $1.76 \times 10^{-4} \Omega$
- (b) $1.76 \times 10^{-6} \Omega$ (c) $1.76 \times 10^{-8} \Omega$
- (d) $1.76 \times 10^{-12} \Omega$
- 5. A wire of resistance 4_{Ω} is bent through 180° at its mid point and the two halves are twisted together. Then the resistance is
 - (a) 1Ω

- (b) 2Ω
- (c) 5Ω
- (d) 8Ω
- 6. The resistance of a wire is 5_{Ω} at $50^{\circ}C$ and 6_{Ω} at $100^{\circ}C$. The resistance of the wire at $0^{\circ}C$ will be
 - (a) 1_{Ω}

- (b) 2_{Ω}
- (c) 3_{Ω}
- (d) 4Ω
- The temperature coefficient of resistance of a metal is $0.004^{\circ}C^{-1}$. If a wire of this metal has resistance 1_{Ω} at $0^{\circ}C$ then what will be the value of that resistance at $100^{\circ}C$?
 - (a) 0.6Ω

- (b) $0.96 \,\Omega$
- (c) 1.04Ω
- (d) 1.4Ω

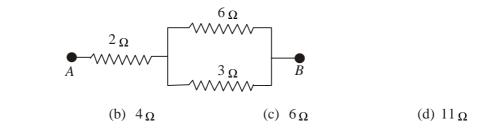
8.	If three resistances, connected currents flowing through the		ted as $R_1 > R_2 > R_3$, then	what is the relation between the
	(a) $I_1 = I_2 = I_3$	(b) $I_1 > I_2 > I_3$	(c) $I_1 < I_2 < I_3$	(d) $I_1 > I_3 > I_2$

9. Two resistances of 6 Ω and 3 Ω are connected in parallel and this combination is connected to a battery of emf 2 V. What will be the current flowing through the 6 ohm resistance?

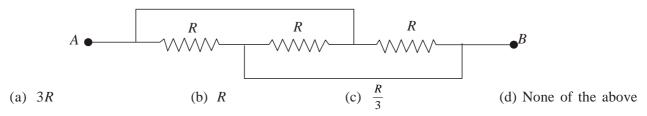
(a)
$$\frac{1}{3}A$$
 (b)

(b)
$$\frac{2}{3}A$$

(d) 2 A


10. A uniform metal wire of resistance *R* is stretched to twice its length. Now this wire is halved, and the two halves are connected in parallel. The equivalent resistance is

(a)
$$\frac{R}{2}$$


(a) 3Ω

(d) 4R

11. The equivalent resistance between the points A and B is

12. The resistance across A and B in the Fig. below will be

13. A set of n identical resistors, each of resistance R ohm when connected in series, has effective resistance X ohm and when connected in parallel the effective resistance is Y ohm. The relation between R, X and Y is given by

(a)
$$R = \sqrt{XY}$$

(b)
$$R = Y\sqrt{X}$$

(c)
$$R = X\sqrt{Y}$$

(d) $\sqrt{R} = XY$

14. In which material, electric currents develop when an electric field is applied?

- (a) Conductor
- (b) Wooden piece
- (c) Non-conductor

(d) Insulator

15. A wire is stretched so as to change its diameter by 0.25%. The percentage change in resistance is

(a) 4.0%

(b) 2.0%

(c) 1.0%

(d) 0.5%

Ambarnath Banerjee