ST. LAWRENCE HIGH SCHOOL
 A Jesuit Christian Minority Institution
 STUDY MATERIAL
 CLASS -VI
 Subject - Algeb-Geom - First Term

In $5^{4}, 5$ is the base and 4 is the exponent. We read 5^{4} as 5 to the power 4 .
$2^{4}=2 \times 2 \times 2 \times 2=16$
Laws of Exponents :

$$
\begin{array}{cc}
\text { Law } & \text { Example } \\
x^{0}=1 & 7^{0}=1 \\
x^{m} x^{n}=x^{m+n} & x^{2} x^{3}=x^{2+3}=x^{5} \\
x^{m} / x^{n}=x^{m-n} & x^{6} / x^{2}=x^{6-2}=x^{4} \\
\left(x^{m}\right)^{n}=x^{m n} & \left(x^{2}\right)^{3}=x^{2 \times 3}=x^{6} \\
x^{n} y^{n}=(x y)^{n} & x^{3} y^{3}=(x y)^{3}
\end{array}
$$

Some more examples :

1. $(-7)^{10} \times(-7)^{12}$
$=[(-7) \times(-7) \times(-7) \times(-7) \times(-7) \times(-7) \times(-7) \times(-7) \times(-7) \times(-7)] \times[(-7) \times(-7) \times(-7) \times(-7) \times(-7) \times(-7)$
$\times(-7) \times(-7) \times(-7) \times(-7) \times(-7) \times(-7)]$.
$=(-7)^{10+12}$ [Exponents are added]
$=(-7)^{22}$
2. $\left(5^{2}\right)^{7}$
$=(5)^{7 X 2}$
$=5^{14}$
3. $\left[(-3)^{4}\right]^{2}$
$=(-3)^{4 X 2}$
$=(-3)^{8}$
4. $5^{3} \div 5^{1}$
$=(5)^{3-1}$
$=5^{2}$
Squares - If a number is multiplied by itself, the product so obtained is called the square of that number. Exp - $5^{2}=5 \times 5=25$.

Cubes - The number obtained on multiplying a given number by itself three times is called the cube of that number. $\operatorname{Exp}-3^{3}=3 \times 3 \times 3=27$.
U. James Riju.

