

SUBJECT - STATISTICS

WORKSHEET-16

Term: PRE TEST

_	c – POIS Marks:	SSON DISTR 15	ss: XII e:17.06.2020						
Q1.	Select the correct alternative of the following questions.								
	(i)	$X \sim Poisson$ a) λ^r		rth order fac c) λ^{r-1}	torial moment $\mu_{[r]}$	d) none of these			
(ii) A random variable X denotes no of crimes committed in a year is 3. Then the variance of X is							ζ		
		b) 2	b) 3	c) 2.25		d) none of these			
	(iii)	Poisson dist a) 100%	ribution has do b) 200%	c) 33.339	at $X=8$ and $X=9$,	then CV is d) none of these			
	(iv)	Binomial di a) small	stribution tend b) large	s to Poisson c) 0.5	distribution when	p is too d) none of these			
	(v)	A Poisson d a) 5	istribution has b) 6	double mode		at X=5 and X=6, then parameter is d) none of these			
	(vi)	X ~ Poisso a) 1	$n(1)$, then β_1 b) 2		c) 4	d) none of these			
	(vii)	$X \sim Poisson$ a) $\frac{2}{e}$	$n(1), P(1 \le X)$ $b) \frac{2}{3}$	≤ 2) is	c) $\frac{3}{2e}$	d) none of these			
	(viii)	If for a random variable $X \sim Poisson(1)$, $E(X-E(X))^3$ is equal to							
	()	a) 0	b) 1		c) 4	d) none of these			

(ix)	If a random variable X defines waiting time in a bus stand, then X follows							
	a) binomial	b) Poisson	c) Uniform	d) none of these				
(x)	If $X \sim Poisson(2)$, then $P(X=3)$ is							
	a) $2e^{-2}$	b) $\frac{4}{3}e^2$	c) $2e^{-1}$	d) none of these				
(xi)	If $X \sim Poisson(1)$, then $P(X=0)$ is							
	a) $2e^{-2}$	b) 2 <i>e</i> ²	c) e^{-1}	d) none of these				
(xii)	Standard deviation of a Poisson distribution is 2. Then the value of β_2 is							
	a) 0.25	b) 0.75	c) 0.57	d) none of these				
(xiii)	The probability distribution which has mean is greater than its standard deviation is							
	a) binomial	b) Poisson	c) Uniform	d) none of these				
(xiv)	The probability that an individual will suffer a bad reaction from a particular injection is 0.001. Find the probability that out of 2000 individuals more than 2 individuals will suffer the bad reaction							
	a) $1 - \frac{2}{e^2}$	b) $1 - \frac{3}{e^2}$	c) $1 - \frac{5}{e^2}$	d) none of these				
(xv)	If X follows Poisson distribution satisfying $P(X=0) = P((X=1), \text{then } P(X > 0)$							
	a) 0.8647	b) 0.6847	c) 0.4867	d) none of these				

Prepared by

Sanjay Bhattacharya