

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL-8

SUBJECT – STATISTICS

First term

Chapter: Central tendency

Topic: Median

Class: XI

Date: 13.07.2020

CENTRAL TENDENCY

PART 4

Median is defined as the middle most value of a set of observations when arranged in monotonic order.

Case 1: Discrete raw data.

Observations: x_1 , x_2 , ..., x_n

<u>Type 1</u>: When the number of observations is odd. Take n = 2m + 1.

The median $\tilde{x} = x_{(2m+1)}$

Type 2: When the number of observations is even. Take n= 2m.

The median $\tilde{x} = \frac{1}{2}(x_{(m)} + x_{(m+1)})$

Case 2: Discrete grouped data.

Observations: x_1 , x_2 , , x_n

Frequency: f_1 , f_2 , ..., f_n

- Step 1: Calculate the cumulative frequencies of the observations.
- Step 2: Check from which cumulative frequency $\frac{N}{2}$ is just smaller.
- Step 3: The corresponding observation of the cumulative frequency found in step 2, is the median.

If in step 2, the value of $\frac{N}{2}$ becomes equal to any cumulative frequency, the the average of the corresponding observation and the next observation will be the median.

Case 3: Continuous grouped data

Define:

 x_l : lower class boundary of median class

 x_u : upper class boundary of median class

 F_{-1} : Cummulative frequency(less than type) of the preceding class

 F_0 : Cummulative frequency (less than type) of the media class

 F_1 : Cummulative frequency (less than type) of the next class

 $F_{-1}^{'}$: Cummulative frequency(more than type) of the preceding class

 $F_0^{'}$: Cummulative frequency(more than type) of the median class

 $F_{-1}^{'}$: Cummulative frequency(more than type) of the next class

 c_0 : width of the class

N: total frequency

Type 1 (using less than type cumulative frequency)

- Step 1: Observations to be expressed in class boundaries and frequencies.
- Step 2: Calculate the cumulative frequencies of the classes.
- Step 3: Check from which cumulative frequency $\frac{N}{2}$ is just smaller.
- Step 4: The corresponding class is known as median class.

$$\widetilde{x} = x_l + \frac{\frac{N}{2} - F_{-1}}{f_0} c_0$$

 $\widetilde{x} = x_u - \frac{F_{0-} \frac{N}{2}}{f_0} c_0$

Type 2 (using greater than type cumulative frequency)

- Step 1: Observations to be expressed in class boundaries and frequencies.
- Step 2: Calculate the cumulative frequencies of the classes.
- > Step 3: Check from which cumulative frequency $\frac{N}{2}$ is just smaller.
- Step 4: The corresponding class is known as median class.

$$\widetilde{x} = x_l + \frac{F'_0 - \frac{N}{2}}{f_0} c_0$$

 $\widetilde{x} = x_u - \frac{\frac{N}{2} - F'_1}{f_0} c_0$

Property:

Change of base or origin and scale

If $y_i = a + b \; x_i$, then $\tilde{y} = a + b \; \tilde{x} \; \forall \; i = 1(1)n$

Proof:

By definition $\tilde{y} = y_l + \frac{\frac{N}{2} - F_{-1}}{f_0} (y_u - y_l)$

$$= a + bx_{l} + \frac{\frac{N}{2} - F_{-1}}{f_{0}} (a + bx_{u} - a - bx_{l})$$
$$= a + b\{x_{l} + \frac{\frac{N}{2} - F_{-1}}{f_{0}} (x_{u} - x_{l})$$

$= a + b \tilde{x}$

Uses: Median is being used as a measure of central tendency when

- \checkmark atleast one of the extreme class is open
- ✓ presence of an outlier.

Prepared by Sanjay Bhattacharya