

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION OF WORKSHEET-11

SUBJECT - STATISTICS

Term : 1st

Topic – BINOMIAL DISTRIBUTION

Class: XII

Full Marks: 15

Date:11.06.2020

Q1. Select the correct alternative of the following questions.

- (i) The expectation in Binomial distribution $(n, \frac{1}{3})$ is a) $n\frac{1}{3}$ b) n(1-p) c) p(1-p) d) none of these
- (ii) The variance in Binomial distribution $(5, \frac{1}{2})$ is b) 1.20 b) 10.25 c) 2.25 d) none of these
- (iii)For a binomial distribution if mean is equal to its variance, then p is equal to
a) 0b) 1c) either 0 or 1d) none of th

(iv) The binomial distribution $(n+2, \frac{p}{2})$ is symmetric if and only if **a**) $\mathbf{p} = \mathbf{1}$ b) $\mathbf{p} > \mathbf{1}$ c) $\mathbf{p} < \mathbf{1}$ d) none of these

- (v) The binomial distribution (n+3, p) is positively skewed if and only if a) $p = \frac{1}{2}$ b) $p > \frac{1}{2}$ c) $p < \frac{1}{2}$ d) none of these
- (vi) The binomial distribution (n+3, p) is negatively skewed if and only if a) $p = \frac{1}{2}$ b) $p > \frac{1}{2}$ c) $p < \frac{1}{2}$ d) none of these

(vii)) attains maximum vari c) $p < \frac{1}{2}$	ance at d) none of these
(viii)	The binomial a) $p = \frac{1}{2}$		the minimum variance is c) $p < \frac{1}{2}$	d) none of these
(ix)	X~ <i>Bin</i> (8, 0.) a) 4	5) then first order fa b) 6	c) 8	l to d) none of these
(x)	X~ $Bin(8, 0.1)$ a) $\frac{8}{512}$	5), $P(X \le 1)$ is equ b) $\frac{9}{512}$	(c) $\frac{9}{256}$	d) none of these
(xi)	The binomial distribution attains maximum variance when it is a) Positive skewed b) negative skewed c) symmetric d) none of these			
(xii)	The third order central moment of Bin (9, $\frac{1}{3}$) is			
	a) $\frac{2}{3}$	b) $\frac{1}{3}$	c) 0	d)) none of these
(xiii)	The fifth order central moment of Bin $(n, \frac{1}{2})$ is			
	a) 0	b) n	c) $\frac{n}{2}$	d)) none of these
(xiv)	the binomial distribution (n, p) is leptokurtic when			
	a) $p = \frac{1}{2}$	b) $p > \frac{1}{2}$	c) $p < \frac{1}{2}$	d) none of these
(xiv)	A person tosses an unbiased coin rtepeatedly. Find the probability that in 4 th throw he gets the first head			
	-	b) $\frac{3}{16}$ c) $\frac{1}{4}$	d) no	one of these

Prepared by

Sanjay Bhattacharya