

Class: XII

Chapter: Electrostatics

ST. LAWRENCE HIGH SCHOOL

Date: 5.5.20

A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION TO WORK SHEET 3

Topic:Flux,Gauss's Theorem,E for thin spherical shell,graph.

Subject: PHYSICS

Multiple Choice Question	ns:		1X15=15
1. The electric flux linke the surface is	ed with a surface becomes maxi	mum if the angle between tl	ne field lines and normal to
a) 0°	b) 45°	c) 90°	d) 180°
Ans : (a) 0°			
2. A circular plate of radi circular plate is	us r is placed parallel to a unifo	rm electric field of intensity	E . The flux linked with the
a) zero	b) Ε x πr²	c) E x 2πr	d)E x 4πr²
Ans: (a) zero			
3. If the inward and outw surface is	rard electric flux through a close	ed surface be $ \varphi_1 $ and $ \varphi_2 $,th	e charge inside the closed
a) $(\phi_1 - \phi_2) \epsilon_0$	b) $(\varphi_2 - \varphi_1) \in_0$	c) $(\phi_1 + \phi_2)/\epsilon_0$	d) $(\phi_2 - \phi_1)/\epsilon_0$
Ans: (d) $(\phi_2 - \phi_1)/\epsilon_0$			
4. A charge placed at a doubled , the force will be	distance from an electric dipole ecome	on its axis experiences a for	ce F. If the distance be
a) 2F	b) F/2	c) F/4	d) F/8
Ans: (d) F/8			
5. What is the unit of elec	ctric flux ?		
a) v/m	b) v m	c) v m²	d) v/m²
Ans: (b) v m			
6. Mathematical form of	Gauss's theorem is		
a) $\phi = q/\epsilon_0$	b) $\varphi = q \epsilon_0$	c) φ = E S	d) φ = E /S
		1	

Ans (a) $\phi = q/\epsilon_0$					
7. The variation of electric field intensity with distance r from the centre of a thin charged spherical shell of radius R is					
(i) E = 0 (r < R) ; (ii) E = $1/4\pi\epsilon_0$. q/R^2 (r = R) ; (iii) E = $1/4\pi\epsilon_0$. q/r^2 (r > R)					
a) only(i) is correct b) Only (ii) is correct c) only (iii) is correct d) all are correct					
Ans : (d) all are correct					
8. Electric field intensity (E) due to a thin spherical shell of charge at a distance r (r>R) from the centre of the sphere is given by					
a) E= (1 $/ 4\pi\epsilon_0$). q/r ²	b) $4\pi\epsilon_0$ (q/r ²)	c) 4π∈ ₀	d) $qr^2/4\pi\epsilon_0$		
Ans: (a) E = $(1/4\pi\epsilon_0)$. q/ r²				
9. Intensity at any point within solid spherical charged conductor is					
a) zero	b) 4πR²	c) $1/4\pi R^2$	d)1/4πR		
Ans: (a) zero					
10. A spherical shell of radius 20 cm has $20\mu C$ charge placed in vacuum. Calculate the electric intensity at a distance of 15 cm					
a) 0	b)1	c) 2	d)3		
Ans : (a) 0					
11. An electric field is expressed as $\mathbf{E} = (5\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$ unit . Find out the electric flux across an area 200 unit on the yz – plane in that field .					
a) 10 unit	b) 100 unit	c) 1000 unit	d) 1 unit		
Ans : (c) 1000 unit					
12. Gauss's theorem is valid for					
a) stationary charge	b) moving charge	c) both static and movin	g charge d) none of these		
Ans : (c) both static and moving charge					
13. A hemisphere of radius r is placed in a uniform electric field intensity E. How much electric flux passes through it ?					
a) 2πrE	b) 4πr²E	c) 2πr²E	d) πr²E		
Ans : (d) $\pi r^2 E$					
14. S_1 and S_2 are two parallel concentric spheres ($R_2 > R_1$) enclosing charges Q and 2Q respectively . What is the ratio of the electric flux through S_1 and S_2 ?					

c) 2/3

b) 3/1

d) 3/2

a) 1/3

Ans: (a) 1/3

15. A sphere of radius 10 cm has an unknown charge .If the electric field 20 cm from the centre of the sphere is 2 \times 10⁴ NC⁻¹ and points radially inward. What is the net charge on the sphere?

a) q = 88.9 nC

b) q = -88.9 nC

c) q = 0 nC

d) q = 90 nC

Ans: (b) -88.9 nC

Ambarnath Banerjee