

Q1.

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-10

SUBJECT - STATISTICS

Term: 1st

Topic - BINOMIAL DISTRIBUTION	Class: XII
TOPIC - BINOMIAL DISTRIBUTION	Class, All

Full N

Marks: 15				Date:10.06.2020			
	Select the correct alternative of the following questions.						
	(i)	The expectati a) np	on in Binomial distribution b) n(1- p)	ution (n, p) is c) p(1-p)	d) none of these		
	(ii)	The variance b) np	in Binomial distribution b) np(1- p)		d) none of these		
	(iii)	For a binomia a) equal	al distribution mean is . b) greater	than its variance c) smaller	d) none of these		
	(iv)	The binomial a) $p = \frac{1}{2}$		ymmetric if and only if c) $p < \frac{1}{2}$	d) none of these		
	(v)	The binomial a) $p = \frac{1}{2}$		ositivey skewed if and c) $p < \frac{1}{2}$	only if d) none of these		
	(vi)	The binomial a) $p = \frac{1}{2}$		egatively skewed if and c) $p < \frac{1}{2}$	d only if d) none of these		
	(vii)	The binomial a) $p = \frac{1}{2}$		ins maximum variance c) $p < \frac{1}{2}$	at d) none of these		

(viii)	The binomial distribution(n, p) the maximum variance is					
	a) $p = \frac{1}{2}$	b) $p = \frac{n}{4}$	c) $p < \frac{1}{2}$	d) none of these		
(ix)	X~ Bin(8, 0. a) 14	5) then second order fa b) 16	actorial moment is equal c) 18	al to d) none of these		
(x)	X~ Bin(6, 0. a) 0.4	$X \sim Bin(6, 0.5), P(X \le 3)$ is equal to 0.4 b) 0.5 c) 0.6 d) none of these				
(xi)	The symmetria) mean	ic binomial distribution b) mean deviation	n attains maximum c) variance	d) n0ne of these		
(xii)	i) The first order central moment of Bin $(n, \frac{1}{3})$ is					
	a) 0	b) n	c) np	d)) none of these		
(xiii)	ii) The third order central moment of Bin $(n, \frac{1}{2})$ is					
	a) 0	b) n	c) np	d)) none of these		
(xiv)	the binomial distribution (n, p) is mesokurtic when					
	a) $p = \frac{1}{2}$	b) p > $\frac{1}{2}$	c) $p < \frac{1}{2}$	d) none of these		
(xiv)	Each of two persons tosses an unbiased coin n times each. The probability that both of them get same number of heads is					
	a) $2n_{C_n} 2^{-2n}$		c) $\frac{1}{2n}$	d) none of these		

Prepared by

Sanjay Bhattacharya