

# ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION SOLUTION-29(CLASS-12) <u>TOPIC</u>- ELECTROCHEMISTRY SUBTOPIC- ELECTROCHEMICAL CELL



### SUBJECT – CHEMISTRY DURATION – 30 mins

F.M. - 15 DATE -25.06.20

#### 1.1 Li occupies higher position in the electrochemical series of metals as compared to Cu since-

(a) The standard reduction potential of  $Li^+/Li$  is lower than that of  $Cu^{2+}/Cu$ 

(b) The standard reduction potential of  $Cu^{2+}/Cu$  is lower than that of Li<sup>+</sup>/Li

(c) The standard oxidation potential of  $Li/Li^+$  is lower than that of  $Cu/Cu^{2+}$ 

(d) Li is smaller in size as compared to Cu

Ans. a

1.2 The standard reduction potential E° for half reactions are-Zn = Zn<sup>2+</sup> + 2e E° = +0.76 V Fe = Fe<sup>2+</sup> + 2e E° = + 0.41 V The EMF of the cell reaction Fe<sup>2+</sup> + Zn = Zn<sup>2+</sup> + Fe is-(a) -0.35 V (b) + 0.35 (c) + 1.17 V (d) -1.17 V Ans. b

1.3 Consider the following cell reaction:  $2Fe(s) + O_2(g) + 4H^+(aq)$   $2Fe^{2+}(aq) + 2H_2O(I)$ ; E° = 1.67 V At  $[Fe^{2+}] = 10^{-3}$  M, P (O<sub>2</sub>) = 0.1 atm and pH = 3, the cell potential at 25°C is-Ans. d

(a) 1.47 V (b) 1.77 V (c) 1.87 V (d) 1.57 V

1.4 The reduction potential of hydrogen half-cell will be negative if: (a)  $p(H_2) = 2$  atm and [H+] = 2.0 M (b)  $p(H_2) = 1$  atm and [H+] = 2.0 M (c)  $p(H_2) = 1$  atm and [H+] = 1.0 M (d)  $p(H_2) = 2$  atm and [H+] = 1.0 M Ans. d

E<sup>6</sup><sub>Fe<sup>3+</sup>/</sub> = −0.036 ∀, E<sup>6</sup><sub>Fe<sup>2+</sup>/</sub> = −0.439 ∨ 1.5 Given Fe · · · · Fe<sup>2+</sup> will be-(a) −0.072 ∨ (b) 0.385 ∨ (c) 0.770 ∨ (d) −0.270 ∨ Ans. c

1.6 Hydrogen gas is not liberated when the following metal is added to dilute HCla) Mg b) Sn c) Ag d) Zn Ans. c 1.7 Given / - -0.72 V, E<sup>0</sup><sub>Fe<sup>3+</sup></sub>/

The potential for the cell Cr / Cr<sup>3+</sup> (0.1 M) || Fe<sup>2+</sup> (0.01 M) | Fe is-(a) -0.26 V (b) 0.26 V (c) 0.339 V (d) -0.339 V Ans. b

1.8 Given the data at 25°C, Ag + I–  $\rightarrow$  AgI + e– ; E° = 0.152 V Ag  $\rightarrow$  Ag<sup>+</sup> + e–; E° = -0.800 V What is the value of log K<sub>sp</sub> for AgI?

$$\left(2.303\frac{\text{RT}}{\text{F}}=0.059\text{V}\right)$$

(a) -8.12 (b) +8.612 (c) -37.83 (d) -16.13 Ans. d

1.9 The hydrogen electrode is dipped in a solution of pH 3 at 25°C. The potential would be (the value of 2.303 RT/F is 0.059 V) -

```
(a) 0.177 V (b) 0.087 V (c) 0.059 V (d) –0.177 V Ans. d
```

1.10 The rusting of iron takes place as follows:  $2H^+ + 2e_- + 0.5O_2 \longrightarrow H_2^{+}O(I)$ ; E° = +1.23 V Fe<sup>2+</sup> + 2e- → Fe(s); E° = -0.44 V Calculate ΔG° for the net processa) -322 kJ mol<sup>-1</sup> b) -161 kJ mol<sup>-1</sup> c) -152 kJ mol<sup>-1</sup> d) -76 kJ mol<sup>-1</sup> Ans. a

1.11 Zn | Zn<sup>2+</sup> (a = 0.1M) || Fe<sup>2+</sup> (a = 0.01M)|Fe. The emf of the above cell is 0.2905 V. Equilibrium constant for the cell reaction is-

a)  $10^{0.32/0.0591}$  b)  $10^{0.32/0.0295}$  c)  $10^{0.26/0.0295}$  d)  $e^{0.32/0.295}$ 

Ans. b

```
1.12 The Fight in at values of Cr, Mn, Fe and Co are -0.41, + 1.57, +0.77 and +1.97 V respectively.
For which one of these metals the change in oxidation state from +2 to +3 is easiest?
a) Cr b) Mn c) Fe d) Co
Ans. a
```

```
1.13 In case of gaseous components during an electrochemical cell reaction-
```

(a) Partial pressure is considered

- (b) Molarity is considered
- (c) Normality is considered
- (d) None of these

Ans. a

1.14 Function of an electrolytic cell is to-

a) Convert chemical energy into electrical energy

b) Convert electrical energy into chemical energy

c) Convert kinetic energy into potential energy

d) None of these

Ans. b

#### 1.15 Example of an electrochemical cell-

- a) Voltaic cell
- b) Daniel cell
- c) Voltameter
- d) Both a and b
- Ans. d

# PREPARED BY: MR. ARNAB PAUL CHOWDHURY