

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

<u>STUDY MATERIAL-5</u> SUBJECT – STATISTICS

Pre-test

Chapter: BIVARIATE ANALYSIS

Class: XII

Topic:Regression and Rank correlation

Date: 14.05.2020

REGRESSION

RANK CORRELATION PART 2

Problems on regression and rank correlation:

Q1. Given the regression lines 2x + 3y = 7 and 5x + y = 11.

- a. Find mean of x and y.
- b. Identify the regression lines.
- c. Determine correlation coefficient.
- d. Determine the ratio of variances of x and y.

Ans: a. Since the regression lines intersect at (\bar{x}, \bar{y}) .

Solving the given equations we get x = 2 and y = 1.

So $\bar{x} = 2$ and $\bar{y} = 1$

b. Let the line 2x + 3y = 7 is regression equation y on x.

 $2x + 3y = 7 \Rightarrow y = \frac{-2}{3}x + \frac{7}{3} \Rightarrow b_{yx} = \frac{-2}{3}$

And the line 5x + y = 11 is regression equation x on y.

 $5x + y = 11 \implies x = \frac{-1}{5}y + \frac{11}{5} \implies b_{xy} = \frac{-1}{5}$

Now $b_{yx} \cdot b_{xy} = \frac{2}{15} \in [0, 1]$ which shows that the assumption is correct.

c.
$$r_{xy}^2 = b_{yx} \cdot b_{xy} = \frac{2}{15} \Rightarrow r_{xy} = -\sqrt{\frac{2}{15}}$$
.

d.
$$\frac{b_{xy}}{b_{yx}} = \frac{r_{xy}\frac{s_x}{s_y}}{r_{xy}\frac{s_y}{s_x}} = \frac{s_x^2}{s_y^2} \implies \frac{s_x^2}{s_y^2} = \frac{3}{10}$$

Q2.

50

Y:

Find the correlation coefficient between x and y.

25

30

Ans: Given only two points in scatter diagram, only one straight line can be drawn. So both the regression lines coincide on each other.

Hence $r_{xy} = \pm 1$

But from the given data the nature of change of x and y are opposite.

So $r_{xy} = -1$.

Q3. Marks of 5 students in Mathematics and Statistics are given below

Mathematics: 38 48 43 40 41

Statistics: 31 38 43 33 35

- a. Determine the regression lines.
- b. When the marks of a studet in Mathematics is 42, determine his most likely marks in Statistics.
- Ans: Let x_i denotes the marks of i the studet in Mathematics

 y_i denotes the marks of i the studet in Statistics

Assume the regression equation y on x be y = a + bx

The normal equations are $\sum y_i = na + b \sum x_i$ and $\sum x_i y_i = a \sum x_i + b \sum x_i^2$

Also assume the regression equation x on y be x = c + dy

The normal equations are $\sum x_i = nc + d \sum y_i$ and $\sum x_i y_i = c \sum y_i + d \sum y_i^2$

Take $u_i = x_i - 43$ and $v_i = y_i - 38$

So the normal equations become:

 $\sum v_i = na + b \sum u_i$ and $\sum u_i v_i = a \sum u_i + b \sum u_i^2$ for v on u. $\sum u_i = nc + b \sum v_i$ and $\sum u_i v_i = a \sum v_i + b \sum v_i^2$ for u on v.

	X	у	u	V	uv	u^2	v^2
	38	31	-5	-7	35	25	49
	48	38	5	0	0	25	0
	43	43	0	5	0	0	25
	40	33	-3	-5	15	9	25
	41	35	-2	-3	6	4	9
Total:			-5	-10	56	63	108

So from the normal equations: -10 = 5a + (-5)b56 = a(-5) + (63)b

Solving a=2.82 and b=0.79

Hence the regression equation y on x is y= 2.82 + 0.79 x

And similarly solving the normal equations

C = 23.28 and d= 0.52

Hence the regression eqution x on y is

X = 23.28 + 0.52y

So when x=42, y = 2082 + 0.79 (42) = 36.

Q4. The group of 10 workers in a factory is according to their efficiency two groups of different judges as follows:

Worker : A	В	С	D	Е	F	G	Η	Ι	J
Judge1: 4	8	6	7	1	3	2	5	10	9
Judge2: 3	9	6	5	1	2	4	7	8	10

Ans; Taking u_i = rank of ith candidate given by judge 1 v_i = rank of ith candidate given by judge 2

Hence d_i : 1 -1 0 2 0 1 -2 -2 2 -1 d_i^2 : 1 1 0 4 0 1 4 4 1 $\sum_{i=1}^{10} d_i^2 = 19$

Hence
$$r_R = 1 - \frac{6\sum_{i=1}^{10} d_i^2}{n(n^2 - 1)} = 1 - \frac{6X19}{10X99} = 0.88$$

Prepared by

Sanjay bhattacharya