

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION TO WORK SHEET 6

Subject : PHYSICS

CLASS : XII

Date : 9.5.20

Chapter : Electrostatics		Topic :	Topic : E.P. energy, E.P.E. for 3 charge system, work done in rotating Dipole, vel. of q subject to potential.		
Multi	Multiple Choice Question : 1 x 15 = 15				
1.	Give the dimension of electric potential				
	(a) $[ML^2T^{-3}A^{-1}]$	(b) [MLTA]	(c) $[MLT^{-3}A^{-1}]$	(d) $[M^{-1}L^{-1}TA]$	
	Ans. : (a) $[ML^2T^{-3}A^{-1}]$				
2.	A particle of mass $1g$ and having charge 10^{-8} C is passed through a potential difference of 600V. What will be its kinetic energy?				
	(a) $-6x10^6$ erg.	(b) -6 <i>x</i> 10 ⁶ J	(c) $6x10^6 \text{ erg}$	(d) $6x10^6$ J	
	Ans : (d) $6x10^6$ J				
3.	The charges $+q$, $-4q$ and $+2q$ are placed at the angular points of an equilateral triangle f side 0.15 m. If $q = 1\mu$ C. What is the mutual potential energy of the system?				
	(a) 0.4 J	(b) 0.5 J	(c) -0.6 J	(d) 0.8 J	
	Ans. : (c) -0.6 J				
4.	A electric dipole momen	nt of <i>P</i> is placed in the po	sition of stable equilibrium	in electric field of intensity,	

- E. It is rotated through an angle θ from the initial position. The potential energy of the electric dipole in the final position is :
 - (c) $PE(1 \cos \theta)$ (b) $-\text{PESin}\,\boldsymbol{\theta}$ (d) PECos θ (a) PESin θ

Ans. : (c) $PE(1 - Cos \theta)$

5. The velocity v acquired by an electron starting from rest and moving through a potential difference V is shown by which of the following graphs?

6. If an electron is brought towards another electron, the electric potential energy of the system :

(a) increases

- (b) decreases
- (c) become zero (d) remain the same.

Ans. (d) remain the same.

- 7. When is the potential energy of an electric dipole maximum, when placed in a uniform electric field?
 - (a) When it is aligned antiparallal to the electric field.
 - (b) When it is aligned parallal to the electric field.
 - (c) When it is aligned perpendicular to the electric field.
 - (d) When it is aligned 60° to the electric field.
 - Ans. (a) When it is aligned antiparallal to the electric field.
- 8. An α -particle and a proton are accelarated at same potential difference from rest. Find the ratio of their final volocities :
 - (a) $\sqrt{2}:1$ (b) 1:1 (c) $1:\sqrt{2}$ (d) 1:2 Ans.: (c) $1:\sqrt{2}$
- 9. An electric dipole of moment \overrightarrow{P} is lying along a uniform electric field \overrightarrow{E} . The work done in rotating the dipole by 60^o is :

(a) $\sqrt{2}$ PE (b) PE/2 (c) 2PE (d) PE

Ans. : (b) PE/2

10. An electric dipole has the magnitude of its charge as q and its dipole moment is P. It is placed in a uniform electric field E. If its dipole moment is along the direction of the field, the force on it and its potential energy are respectively :

(a) 2qE and minimum (b) qE and PE (c) Zero and minimum (d) qE and maximum

Ans. : (c) Zero and minimum

- 11. Three +Q point charges are placed at the angular points of a triangle of side x. If these charges are sent to infinity what will be their total kinetic energy?
 - (a) 3Qx. (b) $3\frac{Q^2}{x}$ (c) $\frac{Q^2}{x}$ (d) Q^2x Ans. : (b) $3\frac{Q^2}{x}$
- 12. Two charges q_1 and q_2 are placed 30 cm apart as show in figure. A third charge q_3 is moved along the arc of a circle of radius 40 cm from C to D. The change in the potential energy of the system is $\frac{q_3K}{4\pi\epsilon_o}$, where K is :

13. Identical chargges (-q) are placed at each corner of a cube of side b. Then the electrostatic potantial energy of chage (+q) placed at the centre of the cube will be :

(a)
$$\frac{-4\sqrt{2}q^2}{\pi\epsilon_0}$$
 (b) $\frac{8\sqrt{2}q^2}{\pi\epsilon_0 b}$ (c) $\frac{-4q^2}{\sqrt{3}\pi\epsilon_0 b}$ (d) $\frac{8\sqrt{2}q^2}{4\pi\epsilon_0 b}$
Ans. : (c) $\frac{-4q^2}{\sqrt{3}\pi\epsilon_0 b}$

14. 1000 identical water drops each of radius *r* and each having charge *q* are combined into a single drop. If *v* be potential of each small drop and *V* be the potential of the large drop, then the ratio $\frac{V}{v}$ is

(a)
$$\frac{1}{1000}$$
 (b) $\frac{1}{100}$ (c) 1000 (d) 100

Ans. : (d) 100

15. An Electron of mass m and charge e is accelarated from rest through a Potential difference V in vacuum. Its final speed will be :

(a)
$$\sqrt{\frac{2eV}{m}}$$
 (b) $\sqrt{\frac{eV}{m}}$ (c) $\frac{eV}{m}$ (d) $\frac{2eV}{m}$
Ans. : (a) $\sqrt{\frac{V}{v}}$

Ambarnath Banerjee