ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION
Sub: Arithmetic
Class: 7
Date: 04.05.20

STUDY MATERIAL: EXPONENTS

Important Formulae

Laws of Exponents

Powers with like bases

- $a^{n} \times a^{m}=a^{n+m}$.

Example: $3^{2} \times 3^{4}=3^{6}=729$

- $\frac{a^{n}}{a^{m}}=a^{n-m}$.

Example: $2^{5} \div 2^{3}=\frac{32}{8}=4=2^{2}$

- $a^{m} \times a^{-m}=a^{m} \times \frac{1}{a^{m}}=1$

Power of a Power

- $\left(a^{n}\right)^{m}=a^{n m}$

Exponent Zero

- $a^{m} \times \frac{1}{a^{m}}=1$
$\Rightarrow \frac{a^{m}}{a^{m}}=a^{m-m}=a^{0}=1$

Powers with unlike bases and same exponent

- $a^{n} \times b^{n}=(a b)^{n}$
$\frac{a^{n}}{b^{n}}=\left(\frac{a}{b}\right)^{n}$

Introduction

Powers and Exponents

- Repeated multiplication of the same number can be expressed in the form of exponents.
- Example: $625=5 \times 5 \times 5 \times 5$ or 5^{4}.

Here ' 5 ' is the base raised to the power of 4 , where 4 is the exponent and 5^{4} is the exponential form of 625.

Powers with negative exponents

- Numbers can have positive powers which are called positive index. Example $a^{n}=a \times a \times a \ldots \mathrm{n}$ times.
- Numbers can also have negative powers such as
$a^{-m}=\frac{1}{a^{m}}=\frac{1}{a \times a \times a . \ldots . \quad \ldots \text { times }}$
- Example : $5^{-3}=\frac{1}{5 \times 5 \times 5}=\frac{1}{125}=0.008$

Visualising Exponents

Visualising powers and exponents

- Example 1: 54 can be expressed as product of powers of prime numbers.

$$
54=2 \times 3 \times 3 \times 3=3^{3} \times 2^{1}
$$

- Example 2 :We know that $6^{4}<4^{6}$. This can be visualised as shown below:

$$
\begin{aligned}
& 6^{4}=6 \times 6 \times 6 \times 6=1296 \\
& 4^{6}=4 \times 4 \times 4 \times 4 \times 4 \times 4=4096 \\
& \therefore 6^{4}<4^{6}
\end{aligned}
$$

Uses of Exponents

Expanding a rational number using powers

- Rational Numbers can be expanded using exponents and powers.
- Example 1: 1284 can be written as $1 \times 10^{3}+2 \times 10^{2}+8 \times 10^{1}+4 \times 10^{0}$.
- Example 2: 0.597 can be written as $5 \times 10^{-1}+9 \times 10^{-2}+7 \times 10^{-3}$.

Inter conversion between standard and normal forms

- Any number can be expressed as a decimal number between 1.0 and 10.0 including 1.0 multiplied by a power of 10 . Such a form of a number is called its standard form.
- Example:

$$
\begin{aligned}
& 43=4.3 \times 10=4.3 \times 10^{1} \\
& 430=4.3 \times 100=4.3 \times 10^{2} \\
& 4300=4.3 \times 1000=4.3 \times 10^{3} \\
& 43000=4.3 \times 10000=4.3 \times 10^{4}
\end{aligned}
$$

Comparison of quantities using exponents

- If two numbers in standard form have the same power of 10 , then the number with the larger factor is greater.
E.g: $2.05 \times 10^{3}>1.05 \times 10^{3}$
- If two numbers in standard form have the same factor, then the number with the larger power of 10 will be greater.
E.g $2.05 \times 10^{6}>2.05 \times 10^{3}$

Solved Numericals

1. Write the following using exponents:
a) $8 \times 8 \times 8 \times 8$
b) $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$
c) $\mathrm{A} \times \mathrm{A} \times \mathrm{A}$
d) meter \times meter
e) centimeter \times centimeter \times centimeter

Solution

Use the definition of an exponent.
a) $8 \times 8 \times 8 \times 8=8^{4}, 8$ multiplied by itself 4 times.
b) $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=10^{7}$
c) $\mathrm{A} \times \mathrm{A} \times \mathrm{A}=\mathrm{A}^{3}$
d) meter \times meter $=$ meter ${ }^{2}$
e) centimeter \times centimeter \times centimeter $=$ centimeter ${ }^{3}$
2. Evaluate the following:
a) 2^{4}
b) 10^{4}
c) $(-2)^{4}$
d) -2^{4}

Solution

Use the definition of an exponent.
a) $2^{4}=2 \times 2 \times 2 \times 2=16$
b) $10^{4}=10 \times 10 \times 10 \times 10=10,000$
c) $(-2)^{4}=(-2) \times(-2) \times(-2) \times(-2)=16$
d) $-2^{4}=-2 \times 2 \times 2 \times 2=-16$
3. Use exponents to write the following using one power only.
a) 4×8
b) 25×5
c) $16 \times 4 \times 4^{3}$
d) $2 \times 2 \times 8 \times 2^{3}$
e) $B \times B \times B^{3}$

Solution
a) Express 4 and 8 as products of 2 then use exponents.
$4 \times 8=(2 \times 2) \times(2 \times 2 \times 2)=2 \times 2 \times 2 \times 2 \times 2=2^{5}$
b) Express 25 as products of 5 then use exponents.
$25 \times 5=(5 \times 5) \times 5=5 \times 5 \times 5=5^{3}$
c) Express all terms as products of 4 then use exponents.
$16 \times 4 \times 4^{3}=(4 \times 4) \times 4 \times(4 \times 4 \times 4)=4 \times 4 \times 4 \times 4 \times 4 \times 4=4^{6}$
d) Express all terms as products of 2 then use exponents.
$2 \times 2 \times 8 \times 2^{3}=2 \times 2 \times(2 \times 2 \times 2) \times(2 \times 2 \times 2)=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{8}$
e) Express all terms as products of B then use exponents.
$B \times B \times B^{3}=B \times B \times(B \times B \times B)=B \times B \times B \times B \times B=B^{5}$
4. Use exponents to rewrite the following expressions in simplified forms.
a) $2^{3} \times 2^{4}$
b) 6×6^{3}
c) $5 \times 5^{2} \times 5^{3}$

Solution
a) Use the definition of exponents to write expressions as product of 2 then rewrite as in exponent form.
$2^{3} \times 2^{4}=(2 \times 2 \times 2) \times(2 \times 2 \times 2 \times 2)=2^{7}$
b) Use the definition of exponents to write expressions as product of 6 then rewrite as in exponent form.
$6 \times 6^{3}=6 \times(6 \times 6 \times 6)=6^{4}$
c) Use the definition of exponents to write expressions as product of 5 then rewrite as in exponent form.
$5 \times 5^{2} \times 5^{3}=5 \times(5 \times 5) \times(5 \times 5 \times 5)=5^{6}$

Solution of Previous Years' Question Papers

 2019$1^{\text {st }}$ term
4) Simplify:- $3^{8} \div 3^{-2}$
$\frac{3^{8}}{3^{-2}}=3^{8-(-2)}=3^{8+2}=3^{10}=59049$
$2^{\text {nd }}$ Term
2) Simplify: $\left(12^{2}-5^{3}\right) \times \frac{(-1)}{19}^{40}$ Ans: $(144-125) / 19=19 / 19=1$
$3^{\text {rd }}$ Term
iv) $(-1)^{235} \times(-4)^{11} \times(-10)^{9}$ results in a :
a) Negative number
4. v) What is the single exponent of $\left(3^{3}\right)^{7} \times\left(3^{6}\right)^{2}$? Ans- 3^{33}

1. Simplify: $\left(2^{-1} \div 5^{-1}\right)^{2} \times\left(\frac{-5}{8}\right)^{-2}$

Ans-16
$1^{\text {st }}$ Term
v) The value of $7^{0}+8^{0}+9^{0}$ is
c) 3
ii)Absolute value of $-\left(\frac{7}{8}\right)^{2}$ is $\frac{49}{64}$. TRUE
iii)simplifying $(-5) \times(-5)^{2}$ we get 125.FALSE
(v) $-\frac{1}{32}=-\frac{1}{2^{5}}$
(viii) $\left(-\frac{4}{5}\right)^{2+4}=\left(-\frac{4}{5}\right)^{6}$ [Since, bases are equal]
$3^{\text {rd }}$ Term
(i) The reciprocal of $(-3)^{4}$ is $\left(\frac{-1}{3}\right)^{4}$
ii $\left\lvert\,\left(\frac{p}{q}\right)^{\mathrm{n}}\right.$ $\left\lvert\, \begin{aligned} & \mathrm{a}\end{aligned} \frac{p^{n}}{a^{n}}\right.$
(iv) Find the reciprocal of $\left[\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right] \div\left(\frac{1}{4}\right)^{-3}$
$(27-8) \div(4)^{3}=\frac{19}{64} ; \therefore$ Reciprocal is $\frac{64}{19}$

Exercise Problems

Question 1.

Fill in the blanks:-
i. Any non-zero number with exponent zero is equal to \qquad
ii. $2^{x}=16$, then x is \qquad
iii. Writing repeated multiplication of numbers in a short form is called
 \qquad and a raised to the power 3
is called a \qquad
v. if base is negative and exponent is odd, the expression has \qquad
value.

Question 2.

State true or false:-
i. $(a \div a) \times a=a$; for every non-zero rational number
ii. $a^{5} \times b^{5}=a b^{5}$
iii. $\mathrm{b} 1^{2} \times(-\mathrm{b})^{6}=\mathrm{b}^{18}$
iv. 2 is the base of exponential expression $(-2)^{10}$.
v. $2^{4} \times 2^{3}=6^{7}$
vi. $1^{0} \times 0^{1}=1$
vii. $3^{4>} 4^{3}$
viii. $4^{0}+5^{0}+6^{0}=(4+5+6)^{0}$

Question 3

if $4^{x}=64$, then find the value of $12^{2 x-6}$

Question 4.

Find x if
i. $11^{6} \div 11^{4-x}=11^{8}$
ii. $(-3)^{x-2}=-243$

Question 5.

Simplify and express as a power of a rational number.
i. $\left(4^{3}\right)^{2} \times\left(2^{3}\right)^{3} \times 14$
ii. $\left[\left(-3^{5}\right)^{2} \times\left(-3^{5}\right)^{4}\right]^{3}$
iii. $3^{5} \times 10^{5} \times 255^{7} \times 6^{5}$
iv. $3^{8} \times a^{6} 9^{3} \times a^{3}$

Question 6.

Evaluate:-
i. $\left(9^{\circ} \times 7^{0}\right) \times(9+7)$
ii. $(-8)^{0}-11^{\circ}(-23)^{0}$
iii. $(-1)^{10 \times} \times(-1)^{5 \times} \times(-1)^{4}$
iv. $(-1)^{12-(-1)^{7}}$

Question 7.

Write in standard form;
i) 7489.3
ii) $6,780,000$
iii) $8,04,000$
iv) 78,950

Question 8

a is a non-zero rational number. Product of the square of a with the cube of a is equal to the
(a) second power of a
(b) third power of a
(c) fifth power of a
(d) sixth power of a

Question 9

Which of the follwing is equal to 1 ?
(a) $2^{0}+3^{0}+4^{0}$
(b) $2^{0} \times 3^{0} \times 4^{0}$
(c) $\left(3^{0}-2^{0}\right) \times 4^{0}$
(d) $\left(3^{0}-2^{0}\right) \times\left(3^{0}+2^{0}\right)$

Question 10

Which of the two is larger: 3^{12} or 6^{6} ?

