

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION **SOLUTION TO WORK SHEET 23**

Subject: PHYSICS

CLASS : XII	25.6.20

Chapter: Electromagnetism	Topic : Moving coil galvanometer, galvanom as voltmeter and ammeter.		galvanometer	
Multiple Choice Question:				1 x 15 = 15
1. For 1 A current, a galvanometer shows 800Ω is connected in series, it is conv. What is the resistance of the galvanome	erted into a vol			
(a) 50Ω (b) 100Ω Ans. (c) 200Ω	© 200	Ω	800 Ω	
2. In an ammeter 0.5% of main current pa of galvanometer is G the resistance of			esistance	
(a) $\frac{G}{200}$ (b) $\frac{G}{199}$ Ans (a) $\frac{G}{200}$	© 2000	d (d)	199G	
3. What type of galvanometer is used to p laboratory?	repare an amm	eter or a voltmet	er in the	
(a) galvanometer (b) me	oving oil galva	nometer		
© neither @ nor d d ba Ans. moving oil galvanometer	illastic galvano	ometer		
4. In case of a moving coil galvanometer, and the angle of deflection θ ?			e current I	
(a) $I \propto \theta$ (b) $I \propto \frac{I}{\theta^2}$ (c) Ans. (a) $I \propto \theta$) $I \propto \theta^2$	d I $\propto \frac{1}{\theta^2}$		
5. How is a galvanometer converted into a	an ammeter ?			
(a) by connecting a rightly chosen low		nt in parallel to it		
b by connecting a high resistance shu	ınt in parallel to	it.		
© by connecting low resistance in ser	ies with the gal	vanometer.		
d by connecting high resistance in se	ries with the ga	lvanometer.		
Ans. (a) by connecting a rightly chosen	n low resistance	e shunt in paralle	l to it.	
6. How should a resistance be connected voltmeter?	with a galvanor	neter to convert	it into a	
(a) in series (b) in parallel	© neithe	er in series nor in	parallel	
d both in series and parallel				

1

Ans. a in series

7.	What is the nature of magnetic field in a moving coil galvanometer?
	(a) varying (b) radial (c) circular (d) straight
	Ans. (b) radial
8.	A galvanometer is an electromagnetic device which is used to detect the presence of
	(a) voltage in a circuit (b) e. m. f in a circuit (c) current in a circuit
	d none of the above
	Ans. © current in a circuit
9.	When a voltmeter is connected in a circuit, the effective resistance of the circuit does not change due to
	(a) high resistance of voltmeter (b) low resistance of voltmeter
	© voltmeter connected in series
	Ans. d voltmeter connected in parallel
10.	In a moving coil galvanometer of coil of N - turns of area A have a spring of
	stiffness k . If coil is deflected by some angle Φ due to flow of I current in uniform redial magnetic field B , then
	(a) $\Phi = \begin{bmatrix} \frac{NAB}{k} \end{bmatrix} I$ (b) $\Phi = \begin{bmatrix} \frac{k}{BNA} \end{bmatrix} I$
	Ans. (a) $\Phi = \begin{bmatrix} \frac{NAB}{k} \end{bmatrix} I$
11.	To make the field radial in a moving coil galvanometer
	(a) number of turns of coil is kept small (b) magnet is taken in the form of
	horse-shoe © poles are of very strong magnets d poles are cylindrically cut
	Ans. d poles are cylindrically cut
12.	In a moving coil galvanometer having a coil of N - turns of area A and carrying current I is placed in a radial field of strength B . The torque acting on the coil is
	(a) NA^2B^2I (b) $NABI^2$ (c) N^2ABI (d) $NABI$
	Ans. (d) NABI
13.	Current sensitivity of a galvanometer is
	(a) $\frac{NBA}{k}$ (b) $\frac{k}{NBA}$ (c) $\frac{NBA}{kR}$ (d) $\frac{kR}{NBA}$

Ans. (a) $\frac{NBA}{k}$

14. For the given ammeter circuit,

(a) $I_g S = IG$ (b) $(I - I_g)S = I_gG$ (c) $I_g G = (I + I_g)S$ (d) $\frac{I}{I_g} = \frac{G}{S}$

Ans. (b) $(I - I_g)S = I_gG$

15. For the voltmeter circuit given,

(a) $\frac{I_g}{I} = \frac{G}{S}$

 $\bigcirc (I - I_g)R_L = I_g(G + S)$

Ans. \bigcirc (I-I_g)R_L=I_g(G+S)