

St. Lawrence High School

A Jesuit Christian Minority Institution

Term: 1st
Work Sheet – 1

Class – XI Subject – Physics

Date - 15.06.20

Chapter – Units, Dimension & Error Analysis

Topic – Units & Dimension

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. The physical quantity which is not dimensionless is
 - a. Refractive index of a medium
 - b. Frequency
 - c. Relative density
 - d. Angle
- 2. The dimension of pressure is
 - a. $ML^{-2}T^{-2}$
 - b. $M^{-1}L^{-1}$
 - c. MLT^{-2}
 - d. $ML^{-1}T^{-2}$
- 3. The dimension of Young's modulus is equal to the dimension of
 - a. Force
 - b. Momentum
 - c. Pressure
 - d. Energy
- 4. The dimension of acceleration due to gravity is
 - a. LT^2
 - b. LT
 - c. LT^{-1}
 - d. LT^{-2}
- 5. Dimension of work done or energy is
 - a. MLT^{-2}
 - b. ML^2T^2
 - c. ML^2T^{-2}
 - d. MLT
- 6. The work done by electric current is $W = i^2 Rt$, where i = electric current, R = resistance and t = time. Then the dimension of R will be
 - a. $ML^2T^{-3}I^{-2}$
 - b. $ML^2T^3I^{-2}$
 - c. $ML^2T^{-2}I^{-2}$
 - d. ML^2T^{-3}

7.	The force F on a sphere of radius r moving in a medium with velocity v is given by $F=6\pi r\eta v$. The dimension of η is — a. ML^{-3} b. MLT^{-2} c. MT^{-1} d. $ML^{-1}T^{-1}$
8.	The dimensional formula of gravitational constant is – a. $M^{-1}L^3T^{-2}$ b. $ML^{-1}T^{-1}$ c. ML^2T^{-3} d. ML^2T^2
9.	The displacement of a particle y is given by the equation $y = a \sin w \left(\frac{x}{v} - k\right)$, where x is measured in cm and v is the linear velocity. The dimension of k will be – a. T b. T^{-1} c. MT^{-1} d. L^2T^{-1}
10.	A force is given by $F=at+bt^2$. Where t is time. Then the dimensions of a and b will be – a. ML^2T^{-3} , ML^2T^2 b. ML^2T^2 , L^2T^{-1} c. MLT^{-2} , MT^{-1} d. MLT^{-3} , MLT^{-4}
11.	According to Plank's quantum theory, the energy of a photon is $E=h\gamma$. Where, γ is the frequency of the photon. Then what will be the dimension of h ? a. MLT^{-1} b. MT^{-1} c. MLT d. ML^2T^{-3}
12.	If the energy(E), velocity (v) and force (F) are taken as fundamental quantities, then the dimension of mass will be – a. Fv^{-2} b. Fv^{-1} c. Ev^{-2} d. Ev^2
13.	The dimension of $\frac{a}{b}$ in the equation $P=\frac{a-t^2}{bx}$, where P is pressure, x is distance and t is time is – a. MLT^{-1} b. MT^{-2} c. MT^{-1} d. $ML^{-1}T^{-1}$

- 14. The velocity of a particle at time t is given as $v = at + \frac{b}{t+c}$. Where a, b and c are constants. The dimension of a, b and c are respectively –
 - a. LT^{-2} , L and Tb. LT^{2} , LT^{-2} , T

 - c. LT^{-2} , L^2 and T
 - d. LT^{-2} , L and $L^{-1}T$
- 15. In the expression $10^{\frac{ax-bx^2}{t}}$, x represents distance and t represents time. Then the dimension of a and b will be –
 - a. $L^{-1}T$, $L^{-2}T$
 - b. $L^{-2}T$, $L^{-1}T$
 - c. L^2T , $L^{\frac{1}{2}}T$
 - d. LT^{-1} , LT^{-2}

Name of the teacher – Soumitra Maity