

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION TO WORK SHEET 5

Subject: PHYSICS

CLASS: XII	Date: 8.5.20

Topic: Torque on Dipole, Potential, Potential due to Chapter: Electrostatics

Dipole on Axial and Perpendicular bisector point.

Multiple Choice Question:

 $1 \times 15 = 15$

- 1. A dipole of dipole moment $\stackrel{\rightarrow}{P}$ is placed in uniform electric field $\stackrel{\rightarrow}{E}$ then torque acting on it is given
 - (a) $\overrightarrow{\tau} = \overrightarrow{P} \cdot \overrightarrow{F}$

(b) $\overrightarrow{\tau} = \overrightarrow{P} \times \overrightarrow{F}$

 $(c) \xrightarrow{\tau} = \xrightarrow{p} + \xrightarrow{F}$

(d) $\overrightarrow{\sigma} = \overrightarrow{p} - \overrightarrow{p}$

Ans.: (b) $\overrightarrow{\tau} = \overrightarrow{P} \times \overrightarrow{E}$

- 2. An electric dipole is placed at an angle of 30° with an electric field intensity 2 x 10⁵ N C⁻¹. It experiences a torque equal to 4 N m. The charge on the dipole, if the dipole length is 2 cm, is
 - (a) 8 mC

- (b) 2 mC
- (c) 5 mC
- (d) $7 \mu C$

Ans: (b) 2 mC

- 3. An electric dipole with dipole moment $\overrightarrow{P} = (2\hat{i} + 3\hat{j})$ cm is kept in electric field $\overrightarrow{E} = 4\hat{i}$ N/C. The torque acting on it is:
 - (a) $-12\hat{k}$ (Nm)
- (b) $8\hat{k}$ (Nm)
- (c) $12\hat{k}$ (Nm) (d) $-8\hat{k}$ (Nm)

Ans. : (b) $8\hat{k}$ (Nm)

- Number of Statvolt corresponding to 1 volt is :
 - (a) $\frac{1}{100}$

(b) 10^9

(c) $\frac{1}{300}$

(b) 300

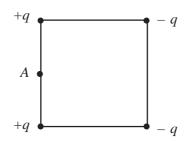
Ans. : (c) $\frac{1}{300}$

- Four point changes each + q is placed on the circumference of a circle of diameter 2d in such a way that they form a square. The potential at the centre of the circle (in CGS) is :
 - (a) 0

- (b) $\frac{4q}{d}$
- (c) $\frac{4d}{q}$

(d) $\frac{q}{4d}$

Ans. : (b) $\frac{4q}{d}$


- The radius of a soap bubble whose potential is 16 V is doubled. The new potential of the bubble is :
 - (a) 2 V

- (b) 4 V
- (c) 8 V

(d) 16 V

Ans.: (c) 8 V

Four electric charges +q, +q, -q are placed at the corners of a square of side 2L. The electric potential at point A midway between the two charges +q and +q is :

- (a) $\frac{1}{4\pi\epsilon_0} \frac{2q}{L} (1+\sqrt{5})$ (b) $\frac{1}{4\pi\epsilon_0} \frac{2q}{L} \left(1+\frac{1}{\sqrt{5}}\right)$ (c) $\frac{1}{4\pi\epsilon_0} \frac{2q}{L} \left(1-\frac{1}{\sqrt{5}}\right)$

Ans.: (c) $\frac{1}{4\pi\epsilon_0} \frac{2q}{L} \left(1 - \frac{1}{\sqrt{5}} \right)$

- The electric potential at a point on the axis of an electric dipole depends on the distance x of the point from the dipole as:
 - (a) ∞x

- (b) $\infty \frac{1}{r}$
- (c) $\infty \frac{1}{\sqrt{2}}$
- $(d) \propto \frac{1}{3}$

Ans.: (c) $\infty \frac{1}{r^2}$

- The electric potential at the surface of an atomic nucleus (Z = 50) of radius of 9 x $10^{-15} \ m$:
 - (a) 80 V

(b) 9V

- (c) $9 \times 10^5 \text{V}$
- (d) $8 \times 10^5 \text{V}$

Ans.: (d) 8 x 10⁵V

- Two charges 10C and + 10C are placed 10 Cm apart. Potential at the centre of the line joining the two 10. charges is
 - (a) zero

- (b) 2 V
- (c) -2 V
- (d) None of these

Ans.: (a) zero

- Two charges each equal to q are placed at the corners of a square of side l. The electric potential at the 11. centre of the square is :
 - (a) $\frac{1}{4\pi\epsilon_0} \frac{4q}{l}$
- (b) $\frac{1}{4\pi\epsilon_0} \frac{4q}{\sqrt{2}l}$ (c) $\frac{1}{\pi\epsilon_0} \frac{\sqrt{2}q}{l}$
- (d) $\frac{1}{\pi \varepsilon_0} \frac{2q}{l}$

Ans.: (c) $\frac{1}{\pi \epsilon_0} \frac{\sqrt{2}q}{l}$

- Two concentric spheres of radii R and r have similar charges with equal surface densities (σ). What is 12. the electric potential at their common centre?
 - (a) $\frac{\sigma}{\varepsilon_0}$

- (b) $\frac{\sigma}{\varepsilon_0} (R-r)$ (c) $\frac{\sigma}{\varepsilon_0} (R+r)$ (d) None of the above.

Ans.: (c) $\frac{\sigma}{\varepsilon_0} (R+r)$

13.	At a point A , there is an electric field of 500 V/m and potential of 3000 V. The distance between the point charge and A is :					
	(a) 6 m	(b) 12 m	(c) 36 m	(d) 144 m		
	Ans.: (a) 6 m.					

14. Potential at a point on the perpendicular bisector of a dipole is :

(a) zero (b) 1 (c) $\frac{q}{2l}$ (d) $\frac{l}{q}$

Ans.: (a) zero.

15. Potential at a distance r from the mid point of a dipole of length 2l on the axis of it is:

(a) zero (b) $\frac{1}{4\pi\epsilon_0} \cdot \frac{p}{r^2 - l^2}$ (c) $\frac{1}{4\pi\epsilon_0} \cdot \frac{2p}{r^2 - l^2}$ (d) $\frac{P}{r^2 - l^2}$

Ans.: (b) $\frac{1}{4\pi \epsilon_0} \cdot \frac{p}{r^2 - l^2}$

Ambarnath Banerjee