

WORKSHEET-12

<u>SUBJECT – STATISTICS</u>

Term : 1st

Topic – CENTRAL TENDENCY

Full Marks: 15

Date:01.07.2020

Class: XI

- Q1. Select the correct alternative of the following questions.
 - (i) The marks of 5 students in a class test are 2, 4, 7, 8, 16. A suitable measure of these marks is
 (a) mean
 (b) geometric mean
 (c) highest value
 (d) none of these
 - (ii) The GM of $2,2^2,, 2^{11}$ is (a) 32 (b) 64 (c) 124 (d) none of these

(iii) Geometric mean of first n even natural numbers is (a) $2 (n!)^{n+1}$ (b) n (c) $2 ((n)!)^{\frac{1}{n}}$ (d) none of these

- (iv) If all the Observation is equal to -5, then the gm is equal to
 (a)-4 (b)-5 (c)-6 (d) none of these
- (v) Geometric mean of -(2n+1), ..., -1, 0, 1, ..., , (2n-1) is (a) -1 (b) 0 (c) $\frac{n-1}{2}$ (d) none of these
- (vi) Geometric mean of cast of several people (a)n-1 (b) 0 (c) $\frac{n-1}{2}$ (d) none of these
- (vii) Geometric mean can be calculated of a set having observation
 (a) uncountably finite
 (b) uncountably infinite
 (c) countably finite
 (d) none of these

(viii)	If 5x=0.7y and geometric mean of x is 7, then geometric mean of y is			
	(a) 0	(b)1	(c)0. 5	(d) none of these
(ix)	Geometric mean depends upon the change of			
	(a) base	(b) scale	(c) both	(d)none of these
(x)	The composite geometric mean lies between the geometric mean of two given sets			
	(a) always	(b) never	(c) sometimes	(d) none of these
(xi)	If the maxim (a) < 6	um value of a s (b) >6	et of observations is 6, (c) = 6	then the geometric mean is (d) none of these
(xii)	The product (a) -1	of ratio of of ge (b) 1	eometric mean from to (c) 0	all the observations is (d) none of these
(xiii)	There are 10 observations with geometric mean 3. If 0.3 is divived to all the observations then the geometric mean of the new set is			
	(a) -30	(b) 10	(c) 30	(d) none of these
(xiv)	There are 10 observations with gm. 4. If all the observations be divided by 4 then the product of those are			
	(a)0	(b) 2	(c) 1	(d) none of these
(xv)	Geometric mean of an countably infinite set of observations is			
	(a) -1	(b) 1	(c) 0	(d) none of these

Prepared by Sanjay Bhattacharya