

St. Lawrence High School

A Jesuit Christian Minority Institution

$\frac{Term:}{Vork Sheet - 4}$

Class - XI

Subject - Physics

Date - 18.06.20

Chapter - Motion in 1D

Topic – Differentiation

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. Differentiating $5x^3 \frac{1}{2}x^2$ w.r.t x we will get
 - a. $\frac{5}{3}x^2 x$
 - b. $5x^2 1$
 - c. $15x^2 2x$
 - d. $15x^2 x$
- 2. If $y = ax^3 bx + c$, where a, b and c are the non zero constants, then $\frac{dy}{dx} =$
 - a. $3ax^2 b$
 - b. $ax^2 bx$
 - c. $3ax^2 bx$
 - d. $3ax^2 b + c$
- 3. $s = 5t^2 \sin t$, then $\frac{ds}{dt} =$
 - a. $10t \cos t$
 - b. $10t^2 + \cos t$
 - c. $\frac{5}{2}t + \cos t$
 - d. $10t + \cos t$
- 4. If $y = \frac{x^4}{4} \cos x$, then $\frac{dy}{dx} =$
 - a. $x^3 \cos x \frac{x^4}{4} \sin x$
 - b. $x^3 sinx \frac{x^4}{4} cosx$
 - c. $\frac{x^3}{4}\cos x \sin x$
 - d. None of these
- 5. Differentiating $\sqrt{x} \frac{1}{\sqrt{x}}$ w.r.t x, we get
 - a. $\frac{1}{2\sqrt{x}}\left(1+\frac{1}{x}\right)$
 - b. $\frac{1}{2\sqrt{x}}\left(1-\frac{1}{x}\right)$
 - c. $\frac{1}{\sqrt{x}}\left(1+\frac{1}{x}\right)$
 - d. None of these

- 6. If, $y = (2x + 6)^5$, then $\frac{dy}{dx} =$
 - a. $10(2x+6)^4$
 - b. $5(2x+6)^4$
 - c. $30(2x+6)^4$
 - d. None of these
- 7. If $y = e^x \cdot lnx$, then $\frac{dy}{dx} =$
 - a. $\frac{e^x}{x} e^x \cdot lnx$
 - b. $\frac{e^x}{x} + e^x \cdot lnx$
 - c. $e^x . lnx$
 - d. None of these
- 8. If $y = 5t^3$ and x = sint then what will be the value of $\frac{dy}{dx}$?
 - a. $15t^2 \cos t$
 - b. $15t^2 sect$
 - c. $15t^2 + cost$
 - d. $15t^2$ sect
- 9. The displacement of a particle in 1D motion is given as $x = 3t^3 9t$ m. The nature of acceleration time graph of the particle will be
 - a. A straight line parallel to the time axis
 - b. A straight line parallel to the acceleration axis
 - c. A straight line making an acute angle with the time axis.
 - d. A straight line making an obtuse angle with the time axis.
- 10. The displacement of a particle is given as a function of time as $s = (t^2 5t)m$, where t is in sec. The velocity and acceleration of the particle are respectively
 - a. $(t^2 5)m/s$ and $2t m/s^2$
 - b. (2t-5)m/s and $2m/s^2$
 - c. (2t)m/s and $2m/s^2$
 - d. (2t-5)m/s and $0 m/s^2$
- 11. The displacement of a particle in 1D motion is given as $x = 3t^3 9t$ m. where t is in sec. the motion of the particle is
 - a. Uniformly accelerated
 - b. Uniformly decelerated
 - c. Non-Uniformly accelerated
 - d. Non-Uniformly decelerated
- 12. In the above problem what is the velocity of the particle at 1sec?
 - a. 0 m/s
 - b. 9 m/s
 - c. -9m/s
 - d. None of these

- 13. the velocity of a particle is given as $v = \frac{2}{3}t^3 4t^2$ m/s. what will its acceleration at t = 2 sec?
 - a. 0 m/s^2
 - b. 8 m/s^2
 - c. -8 m/s^2
 - d. 16 m/s^2
- 14. In the above problem, what will be the acceleration of the particle when velocity is momentarily zero?
 - a. -24 m/s^2
 - b. 24 m/s²
 - c. 48 m/s^2
 - d. It is never possible to have acceleration when the velocity is zero.
- 15. The displacement of a particle in 1D motion is given as $x = 50 + 2t 3t^3$ m. where t is in sec. the motion of the particle is
 - a. Uniformly accelerated
 - b. Uniformly decelerated
 - c. Non-Uniformly accelerated
 - d. Non-Uniformly decelerated

Name of the teacher – Soumitra Maity