

St. Lawrence High School A Jesuit Christian Minority Institution <u>Term : 1st</u> Solution of Work Sheet – 20 Subject – Physics

Class - XI

Chapter – Circular motion

Date - 08.07.20

Topic – Centripetal acceleration & centripetal force

Choose the correct option for the following questions.

- 1. A particle of mass m describes a circular motion of radius r. the centripetal acceleration of the particle is $\frac{4}{r^2}$. The momentum of the particle is
 - a. 2m/r
 - b. $\frac{2m}{\sqrt{r}}$
 - c. $\frac{4m}{5}$
 - C. \sqrt{r}
 - d. $\frac{4m}{m}$
- 2. A particle is moving around a circular path of radius r with uniform angular speed w. The acceleration of the particle is
 - a. $\frac{w^2}{r}$ b. $\frac{w}{r}$ c. vw
 - d. *vr*
- 3. A mass of 2kg is whirled in a horizontal circle by means of a string at an initial speed of 5r.p.m. keeping the radius constant the tension in the in the string is doubled, the new speed is nearly
 - <mark>a. 7r.p.m</mark>
 - b. 14r.p.m
 - c. 10r.p.m
 - d. 20r.p.m
- 4. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity. The motion of the particle takes place in a plane. It follows that
 - a. Its velocity is constant
 - b. Its K.E. is constant
 - c. Its acceleration is constant
 - d. It moves in a straight line
- 5. A stone is tied to one end of string 50cm long and is whirled in a horizontal circle with constant speed. If stone makes 10 revolutions in 20s, then what is the magnitude of acceleration of the stone ?

a. 493 m/s²

- b. 720 m/s²
- c. 860 m/s^2
- d. 990 m/s^2
- 6. For a particle in a non uniform accelerated circular motion
 - a. Velocity is radial and acceleration is transverse
 - b. Velocity is transverse and acceleration radial
 - c. Velocity is radial and acceleration has both the components
 - d. Velocity is transverse and acceleration has both the components

 $1 \times 15 = 15$

- 7. Two particles having mass M and m are moving in a circular path of radius R and r respectively. If their time period are same then the ratio of angular velocity will be
 - a. $\frac{r}{R}$ b. $\frac{R}{r}$ c. 1
 - d. $\sqrt{\frac{R}{r}}$
- 8. A car moving with a speed 30m/s on a circular path of radius 500m. Its speed is increasing at the rate of 2m/s². The acceleration of the car is
 - a. 9.8 m/s²
 - b. 1.8 m/s²
 - c. 2 m/s^2
 - d. 2.7 m/s^2 .
- 9. If a particle is rotating uniformly in a horizontal circle, then
 - a. No force is acting on the particle
 - b. Velocity of particle is constant
 - c. Acceleration of the particle is zero
 - d. No work is done
- 10. A particle moves along a circle of radius $\frac{20}{\pi}$ m with constant tangential acceleration. If the velocity of the particle is 80m/s at the end of the second revolution after motion has begun, the tangential acceleration is
 - a. $\frac{40 \text{ m/s}^2}{\text{m}^2}$.
 - b. 640 m/s².
 - c. 160 m/s^2 .
 - d. $40\pi \text{ m/s}^2$.
- 11. The linear and angular acceleration of a particle are 10 m/s^2 and 5rad/s^2 respectively. It will be at a distance from the axis of rotation
 - a. 50m
 - b. 0.5m
 - c. 1m
 - d. 2m
- 12. The angular acceleration of particle moving along a circular path with uniform speed
 - a. Uniform but non zero
 - b. Zero
 - c. Variable
 - d. As cannot be predicted from given information
- 13. If the speed and radius both are tripled for a body moving on a circular path, then the new centripetal force will be
 - a. Doubled
 - b. Same
 - c. Triple
 - d. One third
- 14. When a body moves with a constant speed along a circle
 - a. No acceleration is present
 - b. No force acts
 - c. Its velocity remains constant
 - d. No work is done on it

- 15. A string of length 0.1m can not bear a tension more than 100N. it is tied to a body of mass 100g and rotated in a horizontal circle. The maximum angular velocity can be
 - a. 100rad/s
 - b. 1000rad/s
 - c. 10000rad/s
 - d. 0.1rad/s

Name of the teacher – Soumitra Maity