

Date - 27.06.20

Chapter - Vector

Class – XI

Topic - Cross product

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. If $\vec{A} = 2\hat{i} + 3\hat{j}$ and $\vec{B} = \hat{i} + \hat{j}$, then what is the component of \vec{A} along the direction of \vec{B} ?
 - $\frac{1}{\sqrt{2}}$ a. b. $\frac{3}{\sqrt{2}}$ c. $\frac{5}{\sqrt{2}}$ d. $\frac{7}{\sqrt{2}}$
 - Ans: c. $\frac{5}{\sqrt{2}}$
- 2. If we multiply a non zero vector by -2, then
 - a. The magnitude will be doubled but direction will be same.
 - b. The magnitude will be same but direction will be reversed.
 - c. The magnitude will be doubled and direction will be reversed.
 - d. Both will remain unchanged Ans: c. The magnitude will be doubled and direction will be reversed.
- 3. Choose the incorrect option
 - a. $\vec{A} \times \vec{A} = \vec{0}$
 - b. $\vec{A} \cdot \vec{A} = A^2$
 - c. $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$
 - d. $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$ Ans: c. $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$
- 4. The vector perpendicular to both $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} 2\hat{j} + 4\hat{k}$ is
 - a. $\frac{1}{\sqrt{3}}(\hat{\iota} \hat{j} \hat{k})$
 - b. $\hat{\iota} \hat{j} \hat{k}$
 - c. $\frac{1}{\sqrt{3}}(\hat{\imath}+\hat{j}+\hat{k})$
 - d. $(\sqrt{3}\,\hat{\imath} \hat{\jmath} \hat{k})$ Ans: b. $\hat{i} - \hat{j} - \hat{k}$
- 5. For which values of *a* and *b* $a\hat{i} + b\hat{j}$ will be perpendicular to $\hat{i} + \hat{j}$?
 - a. 1,0
 - b. -2, 0
 - c. 3, 0

d.
$$\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$$

Ans: d. $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$

- 6. The velocities of two particles are given as $\hat{i} + \sqrt{3}\hat{j}$ and $2\hat{i} + 2\hat{j}$ respectively. If they start from the same point, then what is the angle between their directions of motion?
 - a. 60°
 - b. 30°
 - c. 45°
 - d. 15°

<mark>Ans: d. 15°</mark>

- 7. The initial velocity of a particle is $3\hat{\imath} + 4\hat{j}$ m/s. If it moves with an acceleration $0.3\hat{\imath} + 0.4\hat{j}$ m/s², then after 10sec its velocity will be
 - a. 10m/s
 - b. 8.5m/s
 - c. 7m/s
 - d. 7.5m/s

Ans: a. 10m/s

- 8. If $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \cdot \vec{C} = 0$, then \vec{A} will be parallel to
 - a. *Č*
 - b. \vec{B}
 - c. $\vec{B} \times \vec{C}$
 - d. $\vec{B} \cdot \vec{C}$
 - Ans: c. $\vec{B} \times \vec{C}$
- 9. A thin lamina of area $24m^2$ is placed in YZ plane. Its area vector can be represented by
 - a. 24*î*
 - b. 24*ĵ*
 - c. 24 *k*
 - d. $24\hat{\imath} + 24\hat{\jmath}$
 - <mark>Ans: a. 24î</mark>
- 10. Two sides of a parallelogram are given as $3\hat{i} + 4\hat{j}$ and $4\hat{i}$. The area of the parallelogram is
 - a. $16 \hat{k}$ or $-16 \hat{k}$
 - b. $16\hat{j}$ or $-16\hat{j}$
 - c. $12\hat{j} + 16\hat{k}$
 - d. None of these
 - <mark>Ans: a. 16 k̂ or −16 k</mark>̂
- 11. The unit vector perpendicular to the plane contained by two vectors $\hat{i} + \hat{j} \hat{k}$ and $2\hat{i} 3\hat{j} + \hat{k}$ is
 - a. $2\hat{\imath} + 3\hat{\jmath} + 5\hat{k}$
 - b. $-(2\hat{\imath}+3\hat{\jmath}+5\hat{k})$

c.
$$-\frac{2\hat{\imath}+3\hat{\jmath}+5\hat{k}}{\sqrt{38}}$$

d. none of these $2\hat{\imath}+3\hat{\jmath}+5\hat{k}$

Ans: c.
$$-\frac{1}{\sqrt{38}}$$

- 12. For two non zero vectors \vec{A} and $\vec{B} | \vec{A} \times \vec{B} | = \vec{A} \cdot \vec{B}$. then the angle between them will be
 - a. 30°
 - b. 45°
 - c. 60°
 - d. 90°
 - *Ans: b*. 45°

13. If $|\vec{A} \times \vec{B}| : \vec{A} \cdot \vec{B} = 1: \sqrt{3}$, then the angle between two vectors will be –

- a. 30°
- b. 45°
- c. 60°
- d. 120°
 - <mark>Ans: a. 30°</mark>
- 14. The magnitude of the area of the triangle whose two sides are given as two vectors as $\hat{i} 2\hat{j} 2\hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$ is
 - a. 0
 - b. 5 unit
 - c. $5\sqrt{2}$ unit
 - d. 50 unit

<mark>Ans: c. 5√2 unit</mark>

- 15. The three vertices of triangle are given as (1,1,1), (3,1,3) and (1,5,5). What will be the magnitude of the area of the triangle?
 - a. 4 unit
 - b. $4\sqrt{3}$ unit
 - c. 8 unit
 - d. $8\sqrt{3}$ unit Ans: b. $4\sqrt{3}$ unit

Name of the teacher - Soumitra Maity